Big Data Era in Medicine
brought by Genome Omics Information

Hiroshi Tanaka
Tohoku Medical Megabank Organization
Tohoku University
and
Dept. Biomedical Informatics
Tokyo Medical and Dental University
The author have no financial conflicts of interest to disclose concerning the presentation.
Big Data?
Difficult to treat by conventional information processing method because it is too large, too many kinds and too frequently changing

So what is Medical Big Data?
Arrival of **Big Data Era** in Medicine

Rapid and Huge Accumulation of

1. **Comprehensive Molecular Medical Data** brought by the advance of Genome Omics Medicine due to next generation sequencer
2. **Physiological and Behavioral Data** brought by Mobile Health (mHealth) Monitoring by Wearable Sensor
3. **Genomic and Exposomic Data** by World-wide Spread of Biobank and Genome Cohort

Enormously Cost Reduced, nevertheless High Quality Massive Data

Genome data : 13 yr, 3,500 M$ (2003) → 1day 1000$ (2016)

Personalized (Precision) Medicine

Tremendous Improvement of **Preciseness** of Medical Care
New type of Big Data emerges
Medical Big Data Revolution

- **Clinical “Big Data”**
 - Clinical Lab Tests, Prescriptions, Images
 - Ex. NDB (claim DB). J. Sentinel Project DB
- **Socio-Medical “Big Data”**
 - Epidemiological survey data
 - Life style, health exams, questionnaire
 - Due to recent spread of “Digitalization”

- **Comprehensive Molecular Big Data**
 - Genome Omics Medicine
 - Due to Rapid Advance of Clinical Sequencing
- **Life-log Big Data**
 - Epidemiological Survey data
 - Life style, health exams, questionnaire
 - Due to Rapid Advance of Wearable Sensor

Conventional Medical Big data

New type of (Genuine) Medical Big Data
New type of Medical Big Data

Data Structure

- Conventional Medical “Big Data”
 - Big “Small Data”
 - For one subject (patient)
 Num. of attributes is “Small” (n>>p)
 - But Num. of subjects (patients) is “Big”
 - Conventional statistical method works well

- Molecular Big Data (genome, omics)
 - Small “Big Data”
 - Num. of attributes for one subject is “Big”
 - Whole genome sequence (x30 cover), 100Gbp for one patient
 - But Num. of subject (patients) is comparatively “Small”
 - Conventional statistical method does not work well

Necessity of New Data Science of Medicine
New type of Medical Big Data

Purpose to Collect Big Data

• Conventional Medical “Big Data”
 – Population Medicine
 – To reveal the “collective law” (“law of large numbers”) by collecting large number of samples
 – Can not be found by seeing each individual subject

• Molecular Big Data (genome, omics)
 – Personalized Medicine
 – To comprehensively enumerate all the individualized (stratified) patterns exist under the same name of disease
 – For exhaustive search, Big number of samples is necessary

Direction to Collect Big Data is Quite Opposite
Paradigm Changes
Medical Big Data Revolution Causes

• **“Population medicine”** paradigm changes
 – **“One size fit for all” medicine** no more valid
 – **Towards “Personalized (Precision) Medicine”**
 • Comprehensively Survey is necessary
 • How many “Personalized (Stratification) Patterns” of Disease (intrinsic subtype) exit
 • How fine granularity of stratification should be?
 • Big Data is needed for realization of Personalized Medicine

• **“Evidence-based Medicine”** paradigm changes
 – Liberation from the “gold standard” of RCT and EBM
 – RCT: Controlled (Artificial) Clinical Trials with Small-ish populations outside the Real World
 – **Towards Learning from “Real World Data”**
 – (Disease registry, EHR big data) for clinical evaluation of drug, devise, procedure
Genome and Omics

1990 Human Genome Project
2003 HGP finished

Oomics = -Ome (Whole) + -ics (study)

Cell

Transcript Translation

DNA → mRNA → Protein

Nucleus

Genome

Genomics

Transcriptome

Transcriptomics

Proteome

Proteomics

Metabolome

Metabolomics

DNA microarray

sequencer

Mass Spect
Impact of Next Generation Sequencer

Enormously rapid advance of High-throughput Molecular Device

Outstanding speed-up and cost reduction of Next Generation Sequencer

2005～NGS 454 (LS,Roche)
2007/8～454, Solexa (Illumina), SOLiD (LT,TF)
Sequence Revolution
Faster than Moor’s law

Hiseq X system 10 set (cost 1/5)

Illumina 2500
WGS (Whole genome sequencing) 3GB (1 person) X 30 = about 100Gbps
1 person WGS 27 hours
WES (Whole exome sequencing) 60Mb (1 person) X 100 = 6Gbps
15 persons WES for 27 hours

DNA Sequencing Cost: the National Human Genome Research Institute

Sequence Revolution 2007/8
Genome omics medicine and Big Data

NGS, high-throughput technology

Clinical Implementation of genome sequencing, omics.

Accumulation of Genome, omics data

Integration of Molecular & Clinical Data

Medical Big Data

Clinical phenotyping (EMERGE project)

Knowledge Discovery

Genome-omics knowledge

2Pbps NCBI:SRA

Mayo Clinic 100K Genome
Major Areas of Genome Omics Medicine

Start of Clinical Implementation (2010～)

1. **Identification of unknown disease causative gene at the point of clinical routine practice**
 - Wisconsin Univ. (2010 First Clinical Implementation)
 - Baylor Medical College (2011)

2. **Identification of cancer driver mutation**
 - Dana Faber CC, MD Anderson CC (2012～)

3. **Identification of polymorphism of drug metabolizing enzyme (preemptive PGx, EMR implementation)**
 - Vanderbilt Univ., Mayo Clinic (2010～)

<table>
<thead>
<tr>
<th>University/Clinic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical College of Wisconsin</td>
<td>First Clinical Sequencing
3 yo boy, unknown intestinal disease, exome seq. identifies the causative mutation, BM transplantation, Complete Remission</td>
</tr>
<tr>
<td>Baylor Medical College</td>
<td>Whole genome laboratory In-house, Sequencing</td>
</tr>
<tr>
<td>Vanderbilt University Hospital (PREDICT)</td>
<td>Alert of Mismatch in EMR</td>
</tr>
</tbody>
</table>
Three Major Streams of Genome Omics Medicine in US

Identification of Causative Gene for Undiagnosed Disease Exome Sq.
MCW Children H

Polymorphism of Drug Metabolizer, Preemptive PGx
Integrated with EHR
Vanderbilt UH

Sequence Revolution
2005〜 NGS (454, Solexa, SOLID)
2007/8〜

Polymorphism genome Hapmap project 2002〜 GWAS 2003〜

TCGA (2006), ICCG (2008), Results were Published from 2011〜

Identification of Cancer Driver Gene, Molecular Targeted Drug
Dana Faber CC

Genome Omics Medicine Clinical Implementation
Clinical Implementation in United States
Genome/Omics Medicine

More than 20 hospitals have implemented Genome/Omics medicine

<table>
<thead>
<tr>
<th>Institution</th>
<th>Major Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC Wisconsin</td>
<td>Using whole genome sequencing to establish diagnosis in patients with currently undiagnosed genetic disorders</td>
</tr>
</tbody>
</table>
| Mount Sinai | • CYP2C19 testing for antiplatelet rx post percutaneous coronary intervention
 • Personalized decision support for CVD risk management
 • Incorporating genetic risk info |
| Northwestern | Using pharmacogenomics evidence (from GWA genotyping) to guide prescriptions in primary care and assess risk for other conditions such as HFE/hemochromatosis |
| Cleveland Clinic | Tumor-based screening for Lynch syndrome, endometrial cancer |
| UCSD | • Screening for actionable mutations in malignant gliomas and glioblastomas for biomarker based RCTs
 • Targeted rx (such as RET inhibitor) of metastatic solid tumors based on tumor mutation status |
| Morehouse | • Exome sequencing of 1200 early onset severe African American hypertension cases and 1200 controls |
| Duke | • Computer-based family rx collection and CDS tool with 1-yr follow-up for perceptions, attitudes, behaviors related to thrombosis and breast, ovarian, and colon cancer
 • SLCO1B1*5 genotyping and statin adherence
 • Effect of genetic risk info on anxiety and adherence in T2DM |
| Alabama | Planning stages for projects in risk assessment, pharmacogenetic analysis, identification of families for further research |
| Baylor | Whole exome and whole genome sequencing in Mendelian disorders to improve diagnosis |
| Geisinger | • Selection for gastric bypass surgery vs other wt loss means based on genetic variants predictive of long-term benefit from surgery
 • IL28B variants and response to hepatitis C treatment
 • KRAS and BRAF mutational analysis in thyroid cancer patients |
| Ohio State | • Personalized genomic med study of CHF and HTN pts randomized to genetic counseling vs usual care
 • CYP2C19 testing in interventional cardiovascular procedures for clopidogrel |
| Harvard | Whole genome sequencing with integration in EMR and CDS; pilot of 3 patients to start |
| U Penn | Genotyping for assessment of MI risk in Preventive Cardiology program |
| St. Jude’s | Pre-emptive PGx genotyping in children |
| Vanderbilt | Pre-emptive PGx genotyping for clopidogrel, warfarin, or high-dose simvastatin |
| U Maryland | Develop and apply evidence-based gene/drug guidelines that allow clinicians to translate genetic test results into actionable medication prescribing decisions |
| Mayo | • PGx driven selection/dosing of antidepressants
 • CYP2C19 genotyping for antiplatelet rx post PCI |
| Inter-Mountain | Tumor-based screening for Lynch syndrome |
Progress of Genome Omics Medicine and Big Data

2005〜NGS (454 Life sci)
2007〜sequence revolution

2010
Start of Clin. Implementation
first clinical WES (MCW)
first preemptive PGx (VU)

• MCW Nic (3yo). Undiagnosed Enteropathy, WES, XIAP mutation
• Vanderbilt preemptive PG (PREDICT project) Start

MC Wisconsin Clin. Implement. Big Impact
Baylor Med College
Mayo Clinic

Early adopter period

1st gen.

about 2013
Nation-wide project
NIH “BD2K initiative Genome consortium

2nd gen.

2015
President Obama
Precision Medicine initiative

Big Data
Concept

NIH “Big Data to Knowledge” (2012/13)
ACGM incidental finding list 56 genes (2013)
NACHGR report “Future is here” (2013)
CPIC guideline, EGAPP guideline 2013.14

Nation-wide Consortium
Period

Clinical Implementation of Genome Medicine
Several Tens Hospital in US

NIH “BD2K ”COE in Data Science, DDI (2014)
ASCO “CancerLinQ”, Cancer Common
“Precision Medicine (Obama)” 1 M genomic cohort
Genome/Omics medicine in Japan

- National Cancer Center: Hospital East
 - Research Center for Innovative Oncology (2014 ~)
 - Targeted sequencing to find driver mutation of cancer
 - Allocate a patient to the clinical trial for anticancer molecular target drug, SCRUM JAPAN
 - Supported by pharmaceutical companies
- Shizuoka Cancer Center
 - HOPE project (High-tech Omics-based Patient Evaluation)
 - Multi-omics based evaluation technology for driver mutation of cancer
 - Supported by research fund
- The University of Kyoto:
 - Identify driver mutation
 - Search for appropriate molecular-targeted drug trial
 - Patient’s own expense
 - OncoPrime
- AMED
 - iRUD (initiative on rare and undiagnosed disease)
 - Clinical sequencing of unknown causative mutation

The First Year of Genome Medicine In Japan
NIH: eMERGE network

electronic MEdical Record + GEnome

phase I (2007-2011)
- Phenotyping from EMR
 - Develop, disseminate, and apply approaches to research that combine biorepositories with electronic medical record (EMR) systems for genomic discovery and genomic medicine implementation research. In addition, the consortium includes a focus on social and ethical issues such as privacy, confidentiality, and interactions with the broader community
- EMR-based GWAS
 - Developing methods and best practices for the utilization of EMR as a tool for genomic research.
 - Each with its own biorepository (DNA etc) linked to phenotypic data contained within EMRs
- eMERGE-I: 5 Institutes, PheKB
 - Mayo Clinic, Vanderbilt University, Northwestern University, University of Washington, Marshfield Clinic

phase II (2011-2015)
- Integration of Genomic Information into EMR (Clinical Implementation)
- PGx implementation in EMR
- Return of (Genomic) Result (RoR)
- 4 new institutes joined in eMERGE-II
 - Children’s Hospitals, Mount Sinai/Geisinger

Phase III (2015～2019)
- Specially added: phenotypic implication of rare variants

Collaboration with CSER consortium ” (NHGRI)
- “Clinical Sequencing Exploratory Research
- explore the potential of whole-genome and whole-exome sequencing to generate new knowledge and improve patient outcomes
NIH
“Big Data to Knowledge” (BD2K)initiative

• BD2K: Big Data to Knowledge Initiative 2013 start
 – WG on Data and Informatics for Advisory Committee to the Director of NIH
 • Centers of Excellence (COE),
 • Data discovery index (DDI),
 • Training programs of data scientist,
 • Associate Director of Data Sciences- Bourne, PhD.
 – Francis Collins said,
 • The era of ‘Big Data’ has arrived,
 • NIH-wide priority initiative to take better advantage of the exponential growth of biomedical research datasets.
 • NIH play a major role in coordinating access to and analysis of many different data types that make up this revolution in biological information.”
 – http://bd2k.nih.gov
President Obama Precision Medicine Initiative

2015.1 State of the Union Address
New Features of “Precision Medicine”

• New Concept of “Precision Medicine”
 – Essential Same as Concept of “Personalized Medicine”

• Difference from Personalized Medicine
 – More emphasis on “Stratification of disease”
 – Include the effects by environment factors on disease occurrence (GxE interaction)
 – Estimation of the importance of Life-log data mHealth by Wearable Sensor
 – Recognize the importance of Biobank/Genomic Cohort

As the information Source/Basis of Genomic Medicine
PMI 1 million cohort project

ASHG2015 Oct

F. Collins
Big Data and Learning system

- **Artificial Intelligence for Learning system**
 - Neural network: Deep Learning to extract characteristic features
 - Data Mining: Sparse Modeling to reduce dimension
- **The ASCO (American Society of Clinical Oncology) CancerLinQ initiative**
 - Building a “learning health system”
 - Collect and analyze cancer care data from millions of patient visits and expert guidelines
 - Pilot prototype (2013～)
 - a 170,000-record prototype by 2015
 - For any given tumor type, DB of 10,000 to 20,000 patients, and with 50 to 100 common tumor types, records of at least one million patients
 - Uses statistical functions and an artificial neural network to learn, structure, and map data fields
- **IBM Watson for Cancer centers**
 - Memorial Sloan-Kettering Cancer Center
 - The Oncology Expert Adviser software (OEA)
 - New York Genome Center
 - Glioblastoma as a target
Biobank/Genome Cohort

- **Biobank**
 - An organized collection of human biological material and associated information stored for research purposes
 - **Past**: tissue sample for regenerative medicine, resource preservation for clinical study
 - **Present**: information basis for realizing clinical genome medicine
 - World-wide trends to promote Biobank project

- **Types of Biobank/Genome Cohort**
 - **Population-type Biobank**:
 - Prospective able-bodied subjects, Estimation of incidence rate of disease by long-termed follow up
 - Genomic and exposomic information
 - **Disease-type Biobank**:
 - Subjects contracting specific disease. Course of disease, genomic and clinico-pathological information

- **Major Biobanks**
 - **UK biobank**;
 - 500,000 persons (2006-2016), population type
 - **Genomics England**;
 - 100,000 persons (2013-2017), WGS, cancer/rare disease
 - **BBMRI** (Biobanking and BioMolecule Resource Research Infra)
 - More than 300 biobanks in Europe recruited to join BBMRI.
 - Harmonization and Standardization to pool biobank data
 - **Tohoku Medical Megabank**;
 - 150,000 persons (2012～)
 - Community-Based / Residents Cohort 80,000 residents
 - Birth and Three Generation Cohort 70,000 people

NHS Genome Medical Centre
(Genomic England)
These Two Trends would merge and support the genome/omics medicine

Within hospital

Clinical genome medicine

Integrated genome-phenome DB

EHR

Nation-wide basis

New knowledge, New information

Large scale Medical Big Data
(both genomic phenomic information)

Disease Genome Cohort

Population Genome Cohort
Learning Health System

From Discovery of Biological knowledge to Clinical Implementation: 17 yr
While practicing healthcare, acquire the new knowledge

- IOM: “Clinical Data as a Basic Staple of Health Learning”
- “Data obtained from routine medical practice is the Key to support LHS”
- Sharing and learning data improves Health care system
- RCT: Gold standard, but conducting outside the ordinary healthcare systems.
- Is RCT representing the patient group, healthcare is actually directed to
- RCT takes a time and cost
- Effective knowledge accelerate data accumulation

IOM(Institute of Medicine) report 2007, proposed as the paradigm replacing EBM/RCT
Typical example of LHS
Integration of Genomic and Clinical information
BioVU Vanderbilt UH

- **EMR**
 - Synthetic Derivative:
 - De-identified EMR information
 - Opt out (2,300,000 records)

- **Biobank and Genome Analysis**
 - **BioVU**:
 - Genome (DNA)
 - Information Integration with Synthetic Derivative
 - **VANTAGE Core**:
 - 175,000 specimen,
 - DNA extracted from blood,
 - Genomic analysis
EBM changes to BDM (Big Data based Medicine)
Paradigm Shift of Clinical Research

- **Disparity** between RCT Study Population and Real World Data
 - Impossible in reality to make study population including all the stratified (personalized) patterns of disease
 - Current clinical research study population is in “artificial environment” outside real world data

- **Directly use Big Real World Data**
 - No need for unbiased sampling from population
 - Because Big Real World Data is very close to population data
 - But still exist the *bias and confounder* (causality) problem
Possible Solution

Registry-based Clinical Randomized Trial

• Advantage to use “Real World Data” and the rigorous “Randomization” is fused
 – Thrombus Aspiration in ST-Elevation Myocardial Infarction in Scandinavia (TASTE)
 • first trial of RRCT with cost 50 $ per participant
 – Large scaled trial build on already-existing high quality registry

• RRCT process
 – Select the study population from the disease registry where already exist much of clinical information (7244 STEMI patients)
 – Randomized allocation of study and control drug to selected population among registry
 – End point of trial is observed by registry.
Thank you for kind attention