Integration of Genomic and Phenomic Information in Medicine

- Big Data Approach to Medical Knowledge Discovery -

Dept. Biomedical Informatics
Tokyo Medical and Dental University
ToMMo Tohoku University
Hiroshi Tanaka
Big Data?
Difficult to treat by conventional information processing method because it is too large, too many kinds and too frequently changing

So what is
Medical Big Data?
Conventional Big Data of Japan

• **NDB: National Database**
 – Database of reimburse claim data
 – 2011-2012 trial use: strict MLHW inspection, only 18 applications
 – More than 6 billion data.

• **Japanese Sentinel Project Database**
 – DB of drug prescription, adverse effect
 – 2010- MLHW, PMDA
 – Aiming at accumulating 10 million patients’ data,
 – 10 national University Hospitals’ Data to PMDA
 – 2016- open for public

• **Surgeons’ Operation Registry Database**
 – National Clinical Database
 – Academic association qualification for specialist

• **DPC data**
 – Diagnosis Procedure Combination,
 – Japanese version of DRG/PPS, Data are available

Dr. Kimura talked conventional Big data yesterday
New type of Big Data emerges
Era of Big Data in Medicine

1) Clinical Information
 - Conventional Clinical Information
 • Lab test, Image, Prescription etc.

2) Socio-medical Information
 - Population Medicine Information
 • Epidemiological data, medical policy

3) Molecular Information
 - Genome, omics information
 - Personalized medicine/prevention
New type of Medical Big Data

• Conventional Medical Big Data
 – “Big Small Data”
 • For one subject(sample)
 – several tens items (attributes)
 • Big number of subjects(samples)
 • Conventional statistics framework

• Molecular Big Data (genome, omics)
 – “Small Big Data”
 • Enormously many kinds of data for one sample (patient)
 • Whole genome sequence, 100Gbp for one sequencing
 • Gene expression profiles \(\sim 40000 \) probes data (L.Chen)
Genome and Omics

1990 Human Genome Project
2003 HGP finished

Oomics = Ome (Whole) + ics (study)

Cell
- DNA
- mRNA
- Protein

Nucleus

Transcript Translation

Genome
- Genomics
- Transcriptome
- Transcriptomics
- Proteome
- Proteomics
- Metabolome
- Metabolomics

sequencer
DNA microarray
Mass Spect
The second genome revolution

Next generation sequencer
13 years \Rightarrow 1 day, 350 B dollar \Rightarrow 1000 dollar

Ilumina 2500

WGS (Whole genome sequencing)
3GB (1 person) \times 30 = about 100Gbps
1 person WGS 27 hours

WES (Whole exome sequencing)
60Mb (1 person) \times 100 = 6Gbps
15 persons WES for 27 hours

DNA Sequencing Cost: the National Human Genome Research Institute

1000 dollar NGS
Ilumina Hiseq X (10set)
Sequence data

NCBI Sequence Read Archive (SRA)

(p53: 17chr p13.1)
Generation of Medical Big Data

Rapid advances in high-throughput biotechnology
Next generation sequencer etc.

Spread of Clinical Sequencing in Hospital

WGS 100Gb
WES 6Gb

Tens of hospitals in US practice

Accumulation of genome/omics data

Clinical Information Integration

Medical Big Data

Clinical Phenotyping
Genome omics medicine and Big Data

NGS, high-throughput technology

Clinical Implementation of genome sequencing, omics.

Accumulation of Genome, omics data

Integration Molecular & Medical Info.

Clinical phenotyping (EMERGE project)

Medical Big Data

Knowledge Discovery

Genome-omics knowledge
Medical Big Data

Big Data for Healthcare, Drug Discovery

- Healthcare, Medicine
 - Personalized Medicine,
 - Genome omics medicine • Precision Medicine
 - Large scale Biobank, disease cohort
 - Personalized Prevention
 - population biobank cohort spreading all over the world
- Drug Discovery
 - Drug discovery/repositioning
 by connectivity map and gene expression profile DB
 - In silico screening
Personalized Medicine

Clinical Implementation in United States

Genome/Omics Medicine

More than 20 hospitals have implemented Genome/Omics medicine

<table>
<thead>
<tr>
<th>Institution</th>
<th>Major Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC Wisconsin</td>
<td>Using whole genome sequencing to establish diagnosis in patients with currently undiagnosed genetic disorders</td>
</tr>
<tr>
<td>Mount Sinai</td>
<td>• CYP2C19 testing for antiplatelet rx post percutaneous coronary intervention
• Personalized decision support for CVD risk management incorporating genetic risk info</td>
</tr>
<tr>
<td>Northwestern</td>
<td>Using pharmacogenomics evidence (from GWA genotyping) to guide prescriptions in primary care and assess risk for other conditions such as HFE/hemochromatosis</td>
</tr>
<tr>
<td>Cleveland Clinic</td>
<td>Tumor-based screening for Lynch syndrome, endometrial cancer</td>
</tr>
<tr>
<td>UCSD</td>
<td>• Screening for actionable mutations in malignant gliomas and glioblastomas for biomarker based RCTs
• Targeted rx (such as RET inhibitor) of metastatic solid tumors based on tumor mutation status</td>
</tr>
<tr>
<td>Morehouse</td>
<td>• Exome sequencing of 1200 early onset severe African American hypertension cases and 1200 controls</td>
</tr>
<tr>
<td>Duke</td>
<td>• Computer-based family hx collection and CDS tool with 1-yr follow-up for perceptions, attitudes, behaviors related to thrombosis and breast, ovarian, and colon cancer
• SLC01B1*5 genotyping and statin adherence
• Effect of genetic risk info on anxiety and adherence in T2DM</td>
</tr>
<tr>
<td>Alabama</td>
<td>Planning stages for projects in risk assessment, pharmacogenetic analysis, identification of families for further research</td>
</tr>
<tr>
<td>Baylor</td>
<td>Whole exome and whole genome sequencing in Mendelian disorders to improve diagnosis</td>
</tr>
<tr>
<td>Geisinger</td>
<td>• Selection for gastric bypass surgery vs other wt loss means based on genetic variants predictive of long-term benefit from surgery
• IL28B variants and response to hepatitis C treatment
• KRAS and BRAF mutational analysis in thyroid cancer patients</td>
</tr>
<tr>
<td>Ohio State</td>
<td>• Personalized genomic med study of CHF and HTN pts randomized to genetic counseling vs usual care
• CYP2C19 testing in interventional cardiovascular procedures for clopidogrel</td>
</tr>
<tr>
<td>Harvard</td>
<td>Whole genome sequencing with integration in EMR and CDS; pilot of 3 patients to start</td>
</tr>
<tr>
<td>U Penn</td>
<td>Genotyping for assessment of MI risk in Preventive Cardiology program</td>
</tr>
<tr>
<td>St. Jude’s</td>
<td>Pre-emptive PGx genotyping in children</td>
</tr>
<tr>
<td>Vanderbilt</td>
<td>Pre-emptive PGx genotyping for clopidogrel, warfarin, or high-dose simvastatin</td>
</tr>
<tr>
<td>U Maryland</td>
<td>Develop and apply evidence-based gene/drug guidelines that allow clinicians to translate genetic test results into actionable medication prescribing decisions</td>
</tr>
<tr>
<td>Mayo</td>
<td>• PGx driven selection/dosing of antidepressants
• CYP2C19 genotyping for antiplatelet rx post PCI</td>
</tr>
<tr>
<td>Inter-Mountain</td>
<td>Tumor-based screening for Lynch syndrome</td>
</tr>
</tbody>
</table>
Personalized Medicine

**1st generation “Genomic Medicine” (1990～) **

- Human genome ～0.5% different, mutation /polymorphism, SNPs
- Based on the inborn (germline) individual differences of genome
- Aiming at “Personalized medicine”

Estimation of “constitutional risk” of contracting disease

- disease causative gene for genetic disease,
- disease susceptibility gene for “common disease (hypertension, Diabetes) SNP
- No treatment for genetic disease, low genotype relative risk for common disease

Personalized medication based on pre-diagnosis of drug response

- Pharmacogenomics (PGx) diagnosis of different individual response to drug

**2nd generation “Omics-based Medicine” (2000～) **

- Based on and direct use of “acquired omics profile”
- Aiming at “Predictive/Preemptive medicine”

Using omics profile of disease (gene expression profile, etc)

- Diseases due to acquired somatic cell mutation /alternation
- It changes depending on disease stage and sites (“molecular phenome”)

Estimation of degree of on-going state of disease progression

- Discover of disease subtype based on “omics profile”, ex. breast cancer
- Directly related to prognosis or early detection of disease
 more precise than clinico-pathological findings
The Third Generation of Molecular Medicine

• “Systems Molecular Medicine”
 – Methodological basis: **Disease systems biology**
 – Understand disease as an unified system
 – Disease is **system distortion** of molecular network
 – “Pathway centric” diagnosis/therapy, not “molecule centric”
 – Main approach is Using omics profile to identify the patient-specific dysregulated (distorted) pathway branches

• Application to Cancer medicine
 – **“Cancer systems biology”**
 – More than 10 institutes for cancer systems biology in US
Major Areas of Genome/Omics Medicine is mainly first generation (genomic medicine)

1. Identification of **unknown** disease causative gene at the point of clinical routine practice
 Wisconsin Univ. Baylor Medical College

2. Identification of **cancer driver mutation**
 Mayo Clinic, MD Anderson cancer center

3. Identification of well-known disease causative gene
 BRCA1/2 etc.

4. Identification of **polymorphism of drug metabolizing enzyme** (EMR implementation)
 Vanderbilt Univ. · Mayo Clinic

Wiscon

Baylor Medical Colleage

Genome sequencing program, Patient Section

Whole genome laboratory In-house, Seq

Vanderbilt

EMR
Genome/Omics medicine in Japan - trial stage-

- **National Cancer Center: Hospital East**
 - Research Center for Innovative Oncology (2014 ~)
 - Targeted sequence to find driver mutation of cancer
 - Allocate a patient to the clinical trial for anticancer molecular target drug
 - Supported by research fund

- **Sizuoka Cancer Center**
 - HOPE project
 (High-tech Omics-based Patient Evaluation)
 - Multi-omics based evaluation technology for driver mutation of cancer
 - Supported by research fund

- **The University of Tokyo: Center for Genome Medicine**
 - Identify genomic cause of intractable disease
 - Genetic counseling and reference
 - Research fund and Patient’s own expense

- **Juntendo University Hospital**
 - Personalized medication based on polymorphism of drug metabolizing enzyme (preparing)
Omics measurement

• Gene expression profile is established in
 – Breast Cancer Intrinsic classification
 – Prediction micro arrat
 – mammaprint (70 genes) oncotype D (25 genes)
• microRNA, exosome
 – Excellular RNA (exRNA)
 – 84% correct, Salve test for spleen cancer
 – National Cancer Center : NEDO 5yr.project (7.9 B¥)
 • Serum miRNA, miRNA chip, Biobank
• Liquid Biopsy
 – Circulating Tumor Cell
 – Circulating miRNA
 – Circulating DNA
 – Exosome
 – Cancer metabolome

iCOD – integrated Clinical Omics DB

- Bridging the molecular omics information and clinical/pathological, life style information
- Government commissioned project of Integrative database with more than 800 cases based on the concept of “omics-based systems pathology”

Shimokawa, K., Tanaka, H. et.al,

Screen shots of iCOD

Top page → Case Archive → Case List → Simple Search → Timeline view → Case Details → Pathological data → Molecular Data

[Image of screen shots]

http://omics.tmd.ac.jp/
Analysis between molecular and clinical phenotypes in iCOD

Three Layered Map

Pathome-genome Map

Clinical Level

Pathology Level

Molecular Level

Transcriptome mapped on KEGG
Integrated Clinical Omics Systems is an Institutional LHS

- Learn the molecular-clinical phenotype information relation
- Extract clinical knowledge to feedback to clinical practice
- Develop genome EMR system
- Similar to Vanderbilt system

Aiming at realization of Personalized medicine
1. Molecular (disease omics) and clinical phenotypic data integrated to form the unified profiles of disease by network representation

2. Each kind of data must be preprocessed before integration

Phenotyping of clinical data
Interpretation of genome/omics data

3. From integrated representation of unified disease profile, we
1) molecular-clinical phenotype correlation analysis
2) similar patient case retrieval case-based inference
3) clinical knowledge discovery
Genomic EMR consists of two parts

1. Integrated clinical omics database
2. Hospital implemented system of Genomic EMR
Making New type of Medical Big Data
NIH

“Big Data to Knowledge” (BD2K)initiative

• Previous Project: “Biomedical Information Science and Technology Initiative (BISTI)”
• BD2K: Big Data to Knowledge Initiative 2013 start
 – WG on Data and Informatics for Advisory Committee to the Director (ACD) of NIH
 • several focused workshops, calls for proposals for centers of excellence, for a data discovery index, for training programs,
 • Associate Director of Data Sciences---New Position
 – Francis Collins: “lead an NIH-wide priority initiative to take better advantage of the exponential growth of biomedical research datasets, which is an area of critical importance to biomedical research. The era of ‘Big Data’ has arrived, and it is vital that the NIH play a major role in coordinating access to and analysis of many different data types that make up this revolution in biological information.”
 – http://bd2k.nih.gov
NIH “Emerge Project”

- The Electronic Medical Records and Genomics (eMERGE) Network
 - National Human Genome Research Institute (NHGRI) – funded consortium
 - Developing methods and best practices for the utilization of the electronic medical record (EMR) as a tool for genomic research.
 - nine groups: each with its own biorepository (DNA etc) linked to phenotypic data contained within EMRs.
“Medical BigData”

- eMERGE consortium
- CSER consortium
 - “Clinical Sequencing Exploratory Research” NHGRI
 - explore the potential of whole-genome and whole-exome sequencing to generate new knowledge and improve patient outcomes
 - Many of the issues are also relevant to the eMERGE consortium (designated liaison)

Medical Big Data

Genome + Clinico - Environmental (EHR) + Learning System
Big Data and Learning system

- **Learning system**: ASCO (American Society of Clinical Oncology)
- **The ASCO CancerLinQ initiative**
 - focused on building a “learning health system” composed of a knowledge-generating computer network
 - collect and analyze cancer care data from millions of patient visits and expert guidelines
 - feed the knowledge back to providers at the point of care
 - Pilot prototype in 2013
 - every patient’s experience to help inform future cancer care would help drive the advent of personalized medicine
 - a 170,000-record prototype Production version by 2015
 - For any given tumor type, database of 10,000 to 20,000 patients, and with 50 to 100 common tumor types, records of at least one million patients
 - uses statistical functions and an artificial neural network to learn, structure, and map data fields
- **Cancer centers and IBM Watson**
 - Memorial Sloan-Kettering Cancer Center (MSKCC)
 - The Oncology Expert Adviser software (OEA)
 - New York Genome Center
 - Glioblastoma as a target
Personalized Prevention
Prospective Population Biobank

Healthy population cohort

Disease Cohort

Genetic data

Clinical Info

Omics Info

Exam for healthy population

Disease Occurrence

Medical Information from Regional healthcare network (MMWIN)

As LHS Aims at
Personalized Prevention

Prospective Biobank

Health-Environmental info. at the start

Health exam. Environment info

Genomic data

3 generation cohort

Population cohort
Missing Heritability and GxE interaction

Linkage analysis and GWAS results not enough to explain all the heredity of disease

Our view

limitation to ascribe disease cause to a single variant

Gene-gene interaction

Pathway-integrated polygenic effects

Gene-Environment interaction

Teri A. Manolio, Francis S. Collins et al. Finding the missing heritability of complex diseases, vol 461, 8 October 2009
Idiosyncratic Effect of Combination of G x E factors

- Interaction between genetic factor and environmental factor
- Relative risk of colon cancer in Hawai
 - **Relative risk is not the multiplication, idiosyncratic Effect**

<table>
<thead>
<tr>
<th></th>
<th>CYP1A2 Phenotype ≤ Median</th>
<th>CYP1A2 Phenotype > Median</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Likes rare/medium meat</td>
<td>Likes well-done meat</td>
</tr>
<tr>
<td>Non-Smoker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT2 Slow</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td>NAT2 Rapid</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Ever-Smoker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT2 Slow</td>
<td>1</td>
<td>0.9</td>
</tr>
<tr>
<td>NAT2 Rapid</td>
<td>1.2</td>
<td>1.3</td>
</tr>
</tbody>
</table>

HCA (hetero cyclic amine) Carcinogen

GxE interaction In PTSD

- **Serotonin transporter**
 - SLC6A4 (STin2, 5-HTTLPR, rs25531) variation, effects PTSD

- **Follow-up study on North Illinois University Gunfight Incident**

- **5-HTTLPR genotype L/L and anxiety sensitivity and childhood trauma by GxE interaction**
 - Depress Anxiety. 2011 Dec 21;28(12):1048-57.
Identification of Gene-Environment Interaction related to disease development

Simulation data by GENS2* / ToMMo** data

*Gene-Environment interaction Simulator 2
**Tohoku Medical Megabank Organization

2 x 3 Contingency Table

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>affected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unaffected</td>
</tr>
</tbody>
</table>

Calculate P value

Visualize P value based on genotype and environment

- log10(p-value)

Environment factor

Genetic factor

Clustering

smoking
alcohol
sex

rs13266634
rs7903146
rs10505278

Clustering
G x E interaction

\[-\log_{10}(p\text{-value}) = 21.74\]
Future Trends of Health Information System
Two Major Trends

• Becoming Wider and Comprehensive
 – Regional health information organization (Regional HIE like MMWIN)
 – Information network to share the patient data, now about 150 RHIOs in Japan
 – Becomes wider: 2nd medical zone (cities) to 3rd medical zone (whole prefecture) to regional block of prefectures
 – Japanese government announce: Until 2008, Regional Health Information Network cover the whole Japan

• For nation-wide integration of RHIOs
 – “Minimum set of medical information items to share everywhere” (Japanese nation-wide EHR)
 – Nation-wide common healthcare ID for all the people
Two Major Trends

• Individualization (Personalization)
• Health information system must be individualized to support “Life-long healthcare”
• By two ways
 – (1) Omics biomarkers to find disease occurring beforehand
 – (2) daily life monitoring of physiological quantities
iPOP (integrated Personal Omics Profiling)

Personal “Omics” Profiling (POP)
- Genome and Epigenome
- Transcriptome (mRNA, miRNA, isoforms, edits)
- Proteome
- Cytokines
- Metabolome
- Autoantibody-ome
- Microbiome

Fourier Transform to
Time series of omics profile
To detect perturbation for disease
Life-long healthcare and PHR

- **Quanfied Self**
 - Movement from San Francisco area
 - Combination of wearable computer and monitoring sensors to observe physiological quantities

- **COI Tohoku Univ. and Toshiba**
 - collaborate to develop sensing

- **mHealth (mobile healthcare)**
 - Continua consortium & so on
Life-long (life-course) healthcare

- Goal of daily life monitoring
 - Life-long healthcare: prediction of disease occurrence

- Precognition of disease by molecular biomarker
 - preemptive medicine
 - Liquid biopsy
 - circulating RNA, DNA, precognition of cancer, Alzheimer disease
 - DIY genomics
 - Integrated Personal Omics Profile

Reactive medicine → proactive medicine
Future of Health System

Genome/omics and monitoring

Individualization

Area Widening

City to prefecture to whole nation

Daily life home health care

Regional

EHR/PHR life-long health record
Thank you for kind attention
Disease Genes

Published Genome-Wide Associations through 12/2012
Published GWA at p≤5×10^{-8} for 17 trait categories

NHGRI GWA Catalog
www.genome.gov/GWASTudies
www.ebi.ac.uk/fgpt/gwas/
Biobankとゲノムコホート

バイオバンクの目的・機能の変化

- 従来は再生医療ための生体標本や臨床研究の資料保存、
- 近年はゲノム情報の収集が加わる
- ゲノム/オミックス個別化医療、創薬の情報基盤
 - 疾患型BioBank：全国的・全世界規模で症例の分子(ゲノム)情報とそれに対応できる臨床症例の収集。疾患ゲノムコホート、臨床治験DBなども
 - 個別化予防の情報基盤
 - Population型BioBank：前向きコホートで健常人の分子情報(ゲノム)と環境情報を集めて追跡するゲノム・コホート

最近の動向

- UK biobank:
 - 50万人の健常者の健診・血液を集め、その健康医療状況を追跡する
- BBMRI（Biobank/Biomole. Res. Infra.） BioVUの構成
 - 250以上の欧州BioBankを統合

わが国のBiobank計画

- 東北メディカルメガバンク、Biobank Japan, 6NC 疾患コホート等
米国民間ゲノムデータベース

- Craig Ventor “Human Longevity Inc.”
 - 健康・長寿（健康寿命伸長）
 - ゲノム科学、幹細胞治療（Haririと共に）
 - 初期資本7000億円医療費削減、HiseqX 5sets
 - 一年40000ゲノム（幼児から老人まで、患者・健常者も）収集し最大のゲノムDBを作る、臨床情報も収集
 - 腸内細菌も含む一日5人のヒト全ゲノム
 - がん（Moores Cancer Centerと提携）、糖尿病、認知症などの成人疾患に
 - Och F（機械学習の専門家）が加わる

- Google Xプロジェクト“Baseline”
 - 健康に関する尺度発見
 - Conrad AのもとにDuke大学やStanford大学が協力
 - 現在175名、先制医療的なバイオマーカ探し、今後拡大
ゲノム・オミックス医療を支える情報システム

・統合臨床オミックスデータベース
 - 各病院に装備するか、センター方式で病院群が共有するか、2つの方式がある
 - 地域医療連携と連動する方式も考えられる
 - Population（健常人）型 Biobankとも連携が考えられるが、暫くは疾患コホート Biobankとの連携の方が容易である。

・臨床表現型とゲノム・オミックス情報の相関関係の表現方式が重要である