Big Data and Artificial Intelligence in Medicine and Drug Discovery

Hiroshi Tanaka Biomedical Data Science Tokyo Medical and Dental University and Tohoku Medical Megabank Organization, Tohoku University

Coming ! of the era of Big Data Medicine

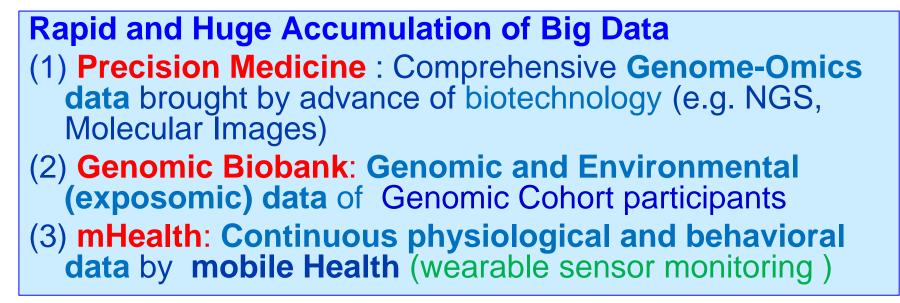
In Next Decade Framework (paradigm) of Medicine Will be Totally Changed!!

Big Data?

Difficult to treat by conventional information processing method because it is too large, too many kinds and too frequently changing

So what is Medical Big Data?

Big Data in Medicine



Enormously **Cost Reduced**, nevertheless **High Quality** Massive Data

Whole Genome seq : 13 yr, 3,500 M\$ (2003) \rightarrow 1day, 1000\$ (2016)

How we should cope with this Medical Big Data Tremendous Improvement of Preciseness of Medical Care

Groundbreaking Change of Medicine

New type of Big Data emerges Medical **Big Data** Revolution

- Clinical Conventional "Large scaled Data"
 - Clinical Lab Tests, Prescriptions, Images
 - Ex. claim DB. Jp. Sentinel Project
- Socio-Medical epidemiological "Large scaled Data"
 - Ordinary epidemiological data
 - life style, health exams, questionnaire
 Due to recent spread of "Digitalization"

Conventional Medical "Larger data"

Big data of "Genome-Omics Medicine"

- Genome Omics Medicine
- Due to Rapid Advance of Clinical Sequencing
- Molecular biomedical images
- Big Data of "Continuously monitoring biosignal"
 - Life-course-oriented healthcare
 - Lifestyle, behavioral information, **mHealth**
 - Due to Rapid Advance of Wearable Sensor

New type of – (Genuine) Medical **Big Data**

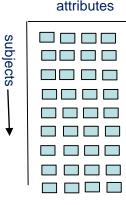
New type of Medical Big Data

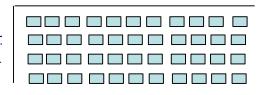
Data Structure

- **Conventional Medical "Big Data"**
 - "n- Big Data"
 - For one subject (patient) Num. of attributes is "Small" (**n>>p**)
 - Num.(n) of subjects (patients) is "Big"
 - Conventional statistical method works well
- New type of Big Data (omics, mHealth)
 - "p Big Data"
 - Num. of attributes(p) for one subject is "Big"
 - "New NP problem" (p>>n)
 - But Num. of subject (patients) is comparatively "Small"
 - Conventional statistical method does not work well

Necessity of

New Data Science of Medicine





attributes

New type of Medical Big Data

Purpose to Collect Big Data

- Conventional Medical "Big Data"
 - Population Medicine
 - To reveal the "collective law" ("laws in group-level") by collecting large number of samples
 - which can not be found by seeing each individual subject
- New type pf Big Data (genome, omics, mHealth)
 - Personalized (Stratified) Medicine
 - To comprehensively enumerate all the individualized (stratified) patterns existing under the same name of disease; How many individualized patterns exists?
 - For exhaustive search, **Big number of samples** is necessary

Intention to Collect **Big Data** is Quite **Opposite** Toward collective vs individualized pattern

Paradigm Changes Medical Big Data Revolution Causes

- "Population medicine" paradigm disrupts
 - "One size fit for all" medicine is no more valid
 - Towards "Individualized Medicine"
 - How many "Personalized (Stratified) Patterns" (intrinsic subtypes) of disease exit under the same name of disease
 - How fine granularity of stratification should be?
 - Big Data is needed for enumeration of these intrinsic subtypes

"RCT and Evidence-based Medicine" paradigm disrupts

- Liberation from the "gold standard" of RCT and EBM
- RCT: Random (Artificial) Controlled Trials with Small-ish populations outside the Real Medical Practice
- These concepts are before the discovery of "individualized medicine" and are no more valid
- Randomization can not eliminate the difference of intrinsic subtypes of disease unlike conventional confounding factors
- Towards Learning from "Real World Data" (Disease registry, EHR big data) for clinical evaluation of drugs, devises, etc.

Big Data in Genome-Omics Medicine

Two Streams of Genome-Omics Medicine

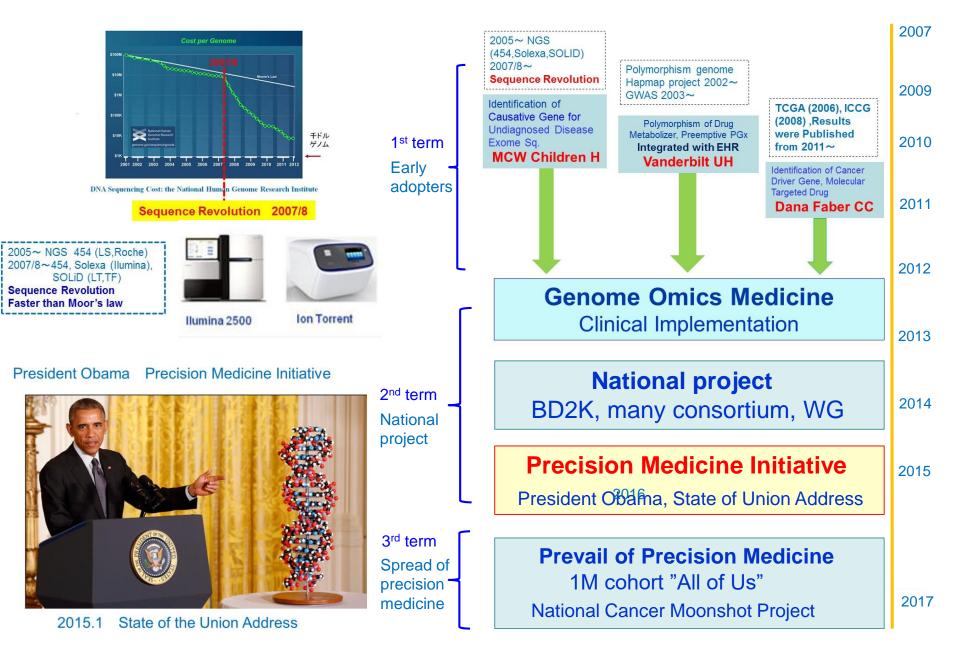
Genome Medicine in United States: Precision Medicine

- Surging Wave of Rapid Clinical Implementation of Genomic medicine (2010) shortly after "Sequence Revolution (2007)"
- Aiming at dramatic improvement in therapeutic medicine for individual patient by genome information
 - POC (Point of care) ID of causative gene for rare disease
 - POC (point of care) ID of driver gene mutation for cancer
 - Preemptive PGx: polymorphism of drug metabolizing enzyme

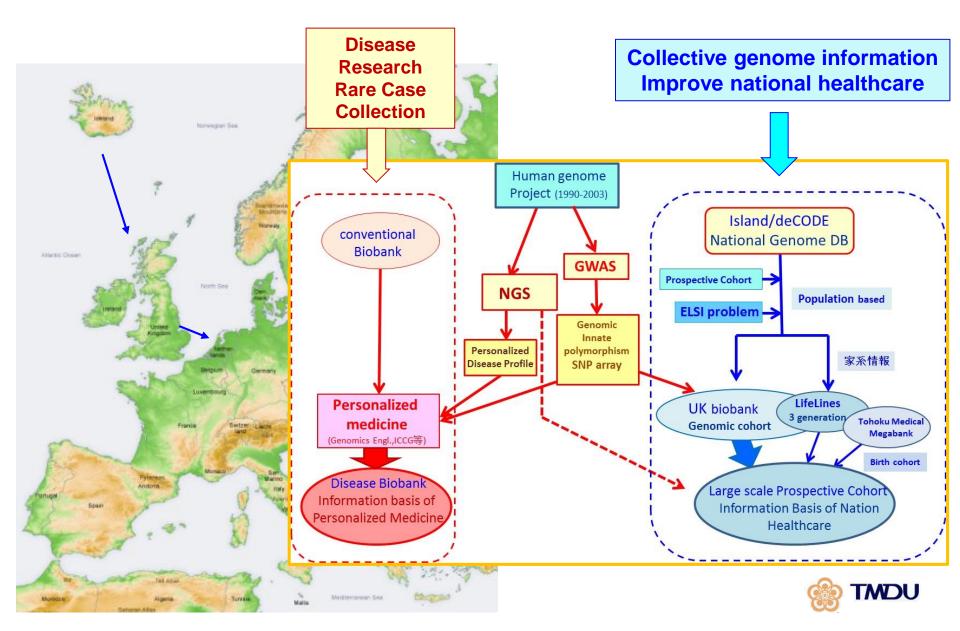
Genome Medicine in Europe: Genomic Biobank

- Recognition of the Value of "Collective Genome Information" (island) to the Spread of Genomic Biobank today
- Aiming at dramatic improvement in preventive medicine for the general public (a nation) by genome information: based on the concept of "welfare state"
 - Prospective Population-based Large Genomic Cohort
 - Prediction of Occurrence of "Multifactorial Disease"
 - Estimate the interaction of genomic predisposition and environmental factors

Genome Medicine of United States

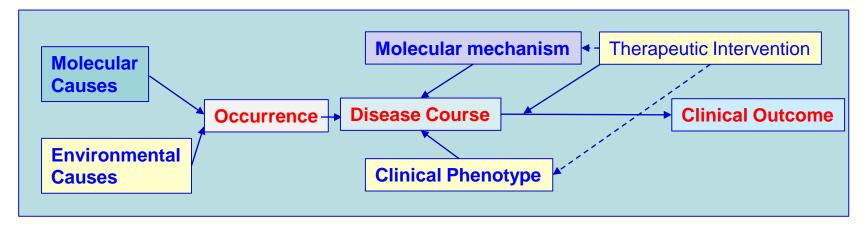


Genome Medicine of Europe

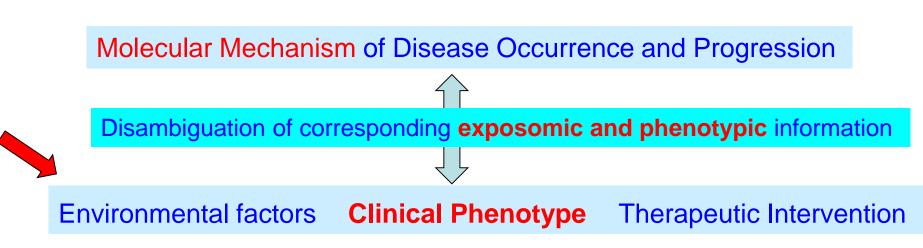


Challenge of Big Data Medicine I

Disambiguation of corresponding "non-genomic" information



Ontology of disease course



eMERGE and PheKB

phase I (2007-2011)

- Phenotyping from EMR
 - genomic discovery and genomic medicine implementation research.
- EMR-based GWAS
 - Each with its own biorepository (DNA etc) linked to phenotypic data contained within EMRs
- eMERGE-I: 5 Institutes, PheKB

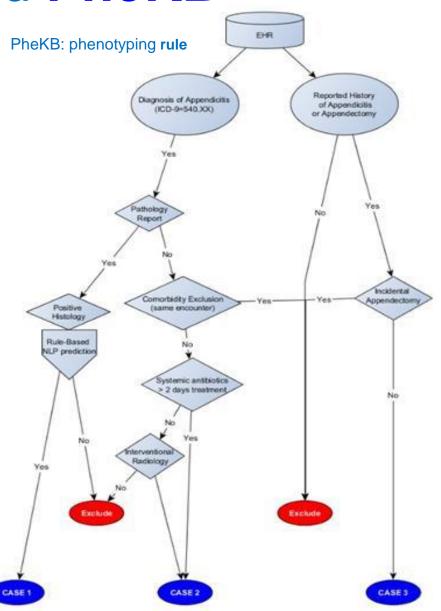
phase II (2011-2015)

- Integration of Genomic Information into EMR (Clinical Implementation)
- PGx implementation in EMR
- Return of (Genomic) Result (RoR)

Phase III (2015~2019)

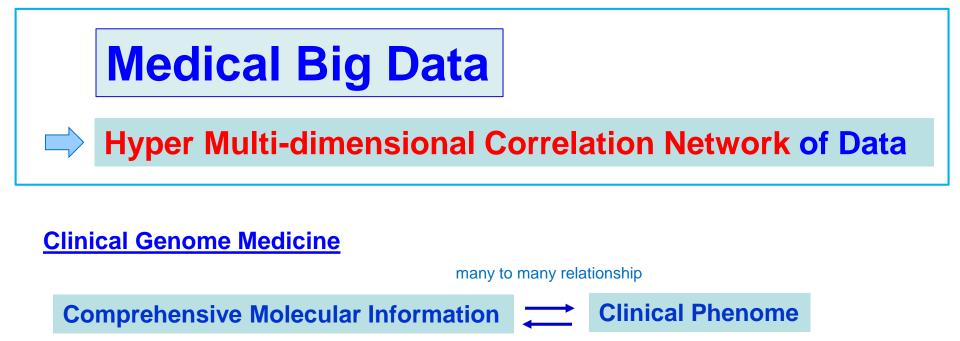
 explore the potential of whole-genome and wholeexome





Challenge of Big Data Medicine II

Contraction Methodology to extract the Intrinsic Information Structure



Genome, multi-omics

Genomic Biobank

clinical signs, lab test, medical image

Disease Occurrence

Genetic Disposition/Molecular Mechanism

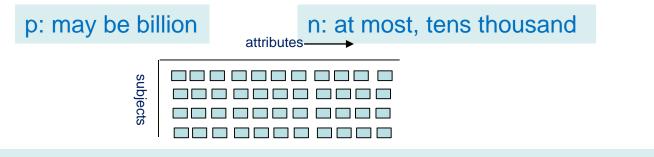
SNV, disease network dysregulation

life style, environmental factors

Exposomic Factors

Data Principle of Big Data

Challenge: num. attributes(p)≫num. subjects (n)



If this huge number of attributes are independent, we can not do anything

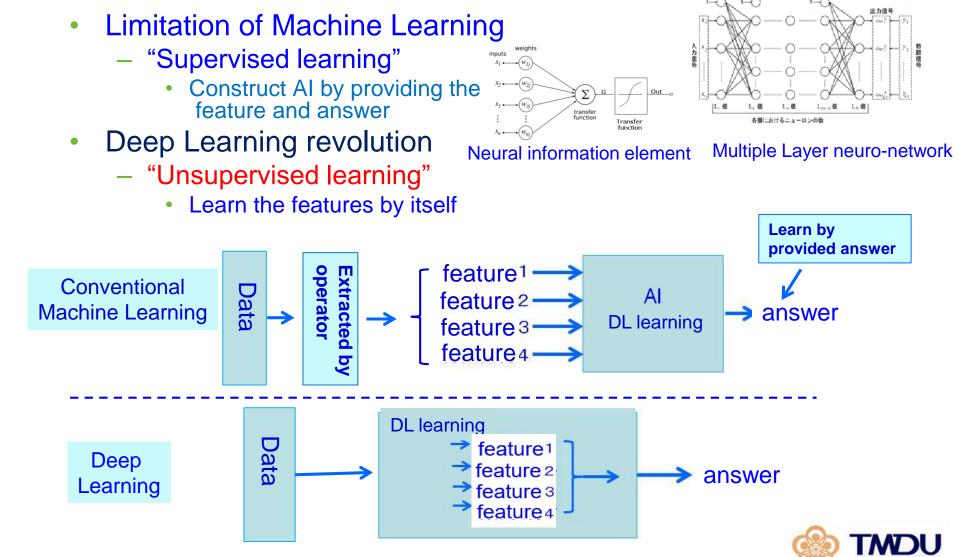
Big Data • Sparse Assumption

Big data is intrinsically determined by the latent variables, number of which is less than number of subjects

principle of compositionality Big data is hierarchically composed of nested structure

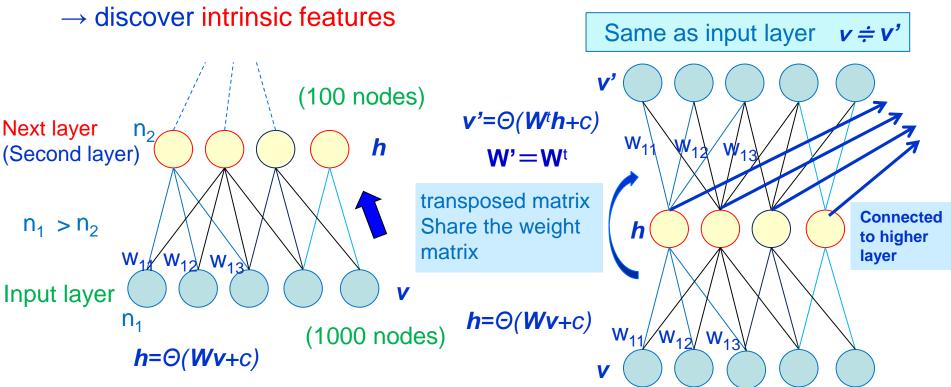
Multi-dimensional medical big data should be contrasted to intrinsic structure

Distinguishably Effective Method AI, Deep Learning



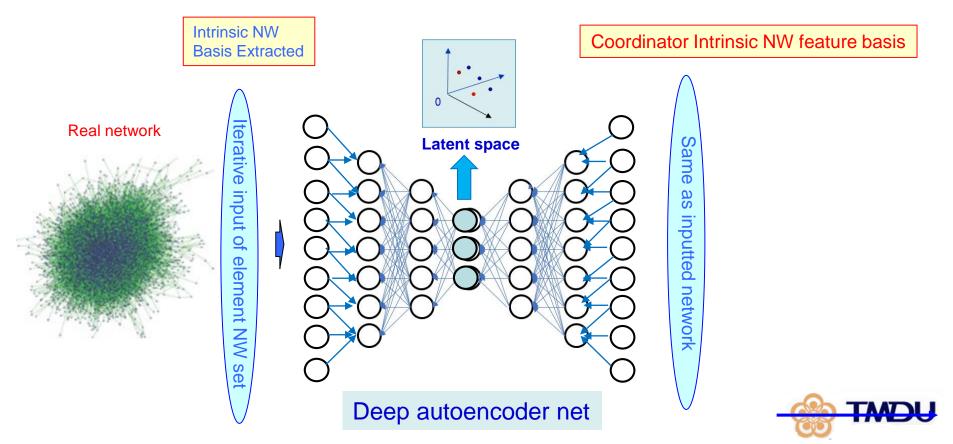
Revolutionary point of DL Autoencoder

- Principle of **autoencoder**: Learn specific intrinsic features of the big data
- Restore the node values of input layer from the node values of next layer where the number of nodes is decreasing compared with input layer.
 → Intrinsic features should be explored so that the input layer to be recovered as same as possible

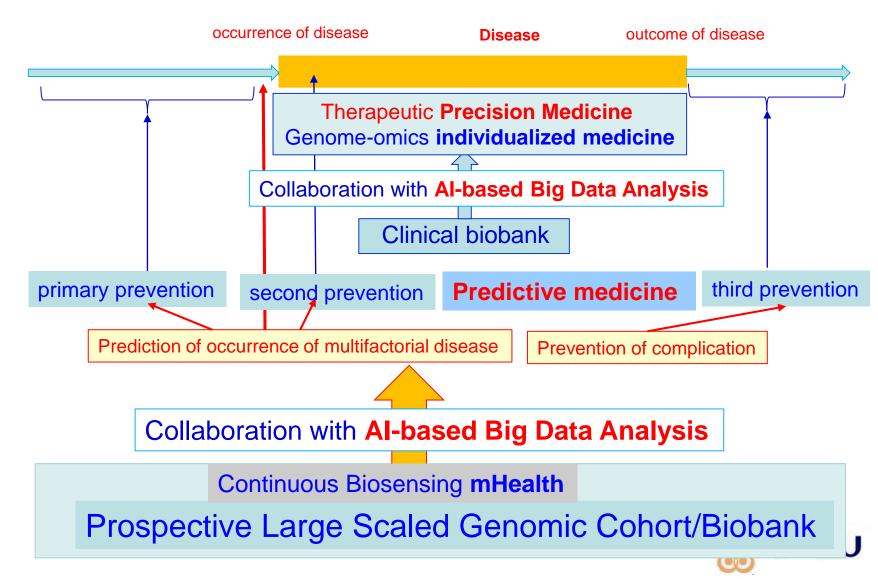


Deep Autoencoder Network

- Deep Learning-based CorrelationNetwork Contraction
 Multi-dimensional correlation network information structure
 ⇒ Contract to be composed of a few network variables
- Projection of data to be composed of intrinsic bases by nonlinear contraction. Contraction to "latent space"



Integration of Big Data Medicine into life-course oriented healthcare

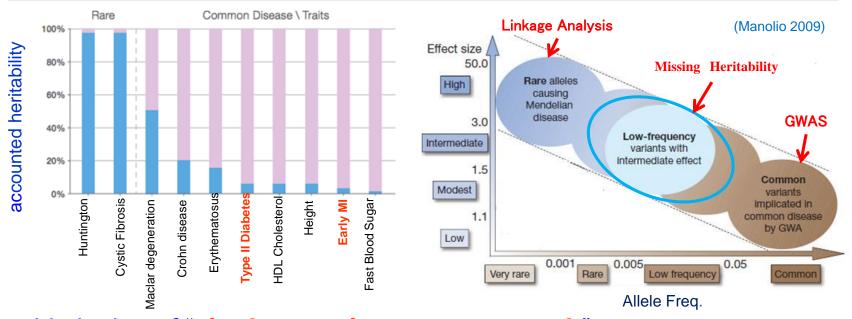


Future Big Data Medicine

- Genome Medicine, Genomic Biobank and mHealth are integrated in
- Life-cource oriented healthcare
 - Understand Individual in his Totality with respect to Overall Susceptibility of Contacting Diseases through Person's Whole Life
 - 1. throughout total life span of his life
 - "from uterus to grave"; DOHaD theory, life course healthcare
 - 2. throughout total ecosystem he lives in
 - Gut Microbiome as mediator between environment factor and biosystem, basis of various diseases

Toward Understanding of Multifactorial Disease -- Interaction between Genomic and Exposomic Factors--

Ineffectiveness of Current Genomic Method



- Limitation of "single genetic cause approach"
 - Explore the single genetic cause of disease (single gene or polymorphism) without any reference to effects of interaction with other genes.
 - Genomic Big data (due to p>>n problem: ordinary statistics does not work because) makes the multivariate analysis (using more than two SNPs) substantially impossible.
- Missing Heritability might be due to not involving the interaction terms
 - Interaction among genes : "epistasis" (genes on the same pathway), GxG
 - Interaction between genes and environment: G x E

(x means interaction)

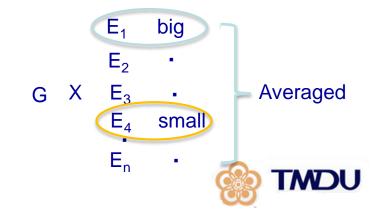
Interaction between gene and environment

Except rare monogenetic disease, most of diseases result from a complex interaction between an individual's genetic make-up and the environmental (exposomic) agents that he or she is exposed to.

Relative Risk= Complex Interaction between G and E

- Neither additive ($G \oplus E$), nor multiplicative ($G \otimes E$)
- <(G,E) Combination Specific> Effect

The reason why Relative Risk of SNP (GWAS) is so small (1.1~ 1.3), combinatory effects are **averaged** on the side of **all the environment factors**



Example of <combination-specific> relative risk

- Typical Example: Interaction of genomic and environmental factor
 - Nether additive, nor multiplicative
- Colon cancer RR study
 - Survey in Hawaii
 - Le Marchand 2001
 - E: Smoking, Well-done red meat
 - G: CYP1A2, NAT2

		CYP1A2 Phe ≦Median	enotype	CYP1A2 Phenotype >Median		
		Likes rare/medium meat	Likes well-done meat	Likes rare/medium meat	Likes well done meat	
Non- Smoker	NAT2 Slow	1	1.9	0.9	1.2	
	NAT2 Rapid	0.9	0.8	0.8	1.3	
Ever- Smoker	NAT2 Slow	1	0.9	1.3	0.6	
	NAT2 Rapid	1.2	1.3	0.9	8.8	

relative risk of

disease occurrence is

Combination - specific

L. Le Marchand, JH. Hankin, LR. Wilkens, et alCombined Effects of Wel	I -
done	

Red Meat, Smoking, and Rapid N-Acetyltransferase 2 and CYP1A2 Phenotypes in Increasing Colorectal Cancer Risk, Cancer Epidemiol. Biomarkers Prev 2001;10:1259-1266

New Disease Risk Method Taking in the Interaction of G x E

The risk of disease is GxE combination-specific

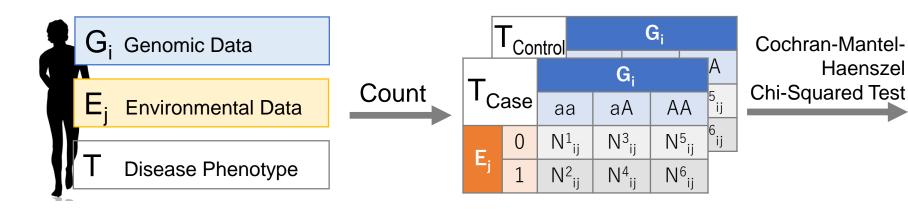
Thus, we should **comprehensively** inquire **the effects** on disease occurrence by **every combination of genomic and exposomic (environmental) factors**.

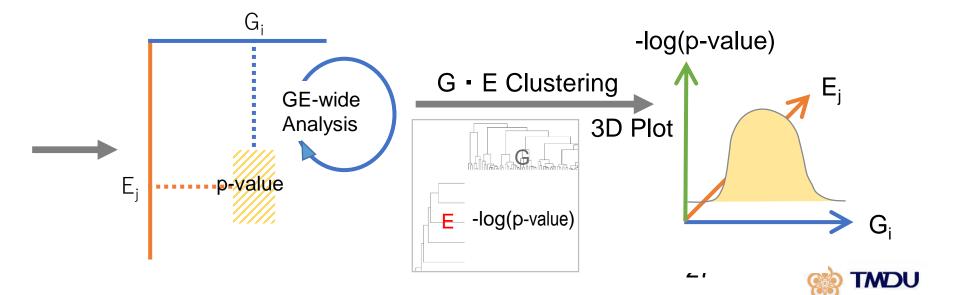
At the first step, evaluate the effect of one to one relation <one of genetic variates> <one of expsomic factors > G_i x E_j

To collect the result (RR or p-value) of each $G_i \times E_j$, Risk distribution for overall GxE combination is obtained as the 2 dimensional landscape of RR or p-value

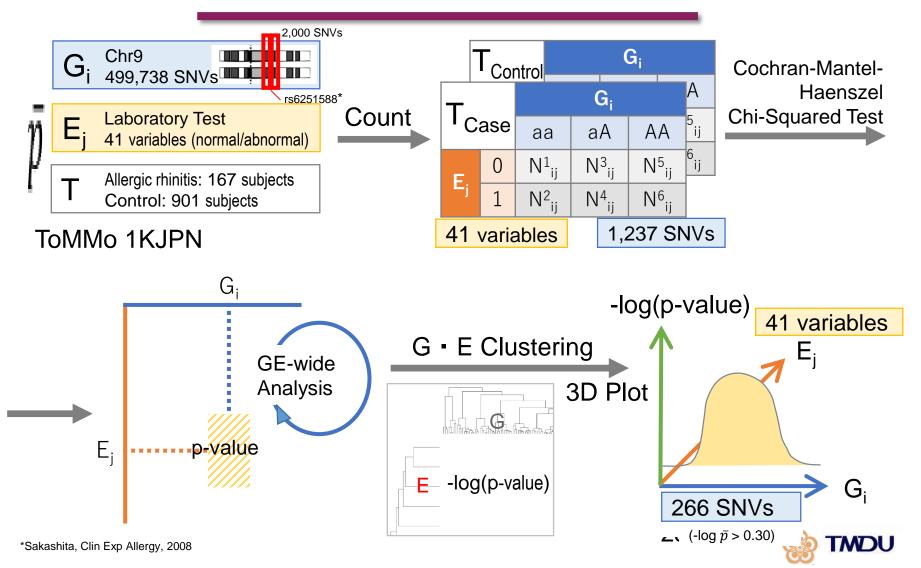
This is the first step of $G \times E$ risk estimation method. We will proceed to deal with more plural $G \times E$ factors

Our Risk Analysis Flow





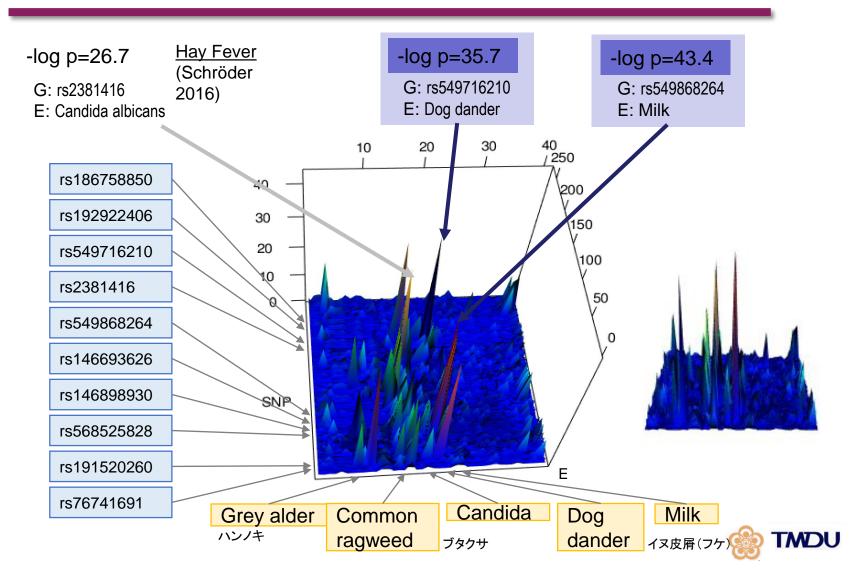
GE-WAS Analysis Flow



Laboratory Test Items

No.	Test Name	No.	Test Name	No.	Test Name	No.	Test Name	No.	Test Name
1	NT-proBNP	11	Common silver birch	21	Crab	31	Leukocyte count	41	lgE
2	Albumin/Cre	12	House dust mite	22	Milk	32	erythrocyte count		
3	Albumin	13	House dust	23	Beaf	33	hemoglobin content		
4	Creatinine (blood)	14	Penicillium notatum	24	Egg white	34	hematocrit		
5	Timothy	15	Candida albicans	25	Peanut	35	mean red cell volume		
6	Sweet vernal grass	16	Cat dander	26	Antibody concentration	36	concentration concentration		
7	Cocksfoot	17	Dog dander	27	Urea nitrogen	37	blood platelet count		
8	Common ragweed	18	Cultivated wheat	28	Uric Acid	38	lymph corpuscle		
9	Mugwort	19	Rice	29	Glucose	39	Acidocyte		
10	Grey alder	20	Shrimp	30	glycoalbumin	40	neutrophil		

GxE Landscape of "Allergic rhinitis"

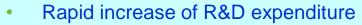


Discussion

- Our method comprehensively calculates the significance levels of p_{ij} for every <one genetic factor G_i> x <one exposomic factor E_j> contingency table.
- From the result of our example, effect of GxE is found to be **combination specific**.
- For designated SNP, some exposomic factor produce a large effect whereas other factor does not.
- We are applying Deep Learning to all the combination of .SNPs and exposomic factors to obtain the essential relations albeit the vast amount of number of combination.

Al-based Drug Discovery

Current Situation of Drug Discovery



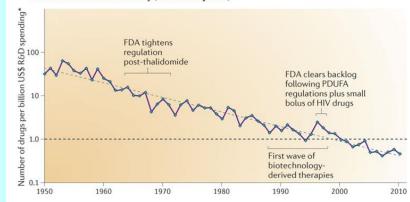
- More than 1B \$ for one marketed drug
- Decrease of success rate

now about 1/20,000~1/30,000

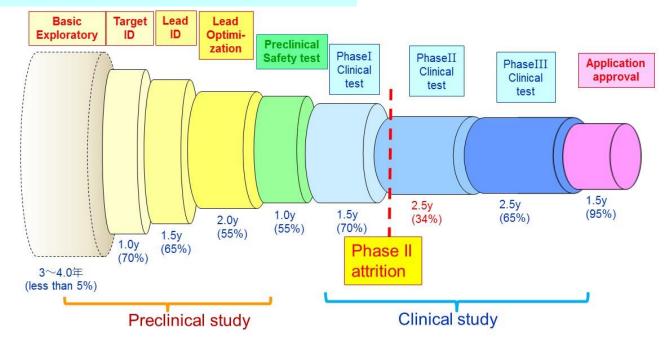
- Remarkable Drop Between non-clinical and clinical test (phase II attrition)
- Clinical Predictability
 - At as early as possible stage,

Estimation of clinical efficacy and toxicity

- Efficient measures
 - Use Disease-specific iPS cell
 - Use of Human Bio Big Data in early stage



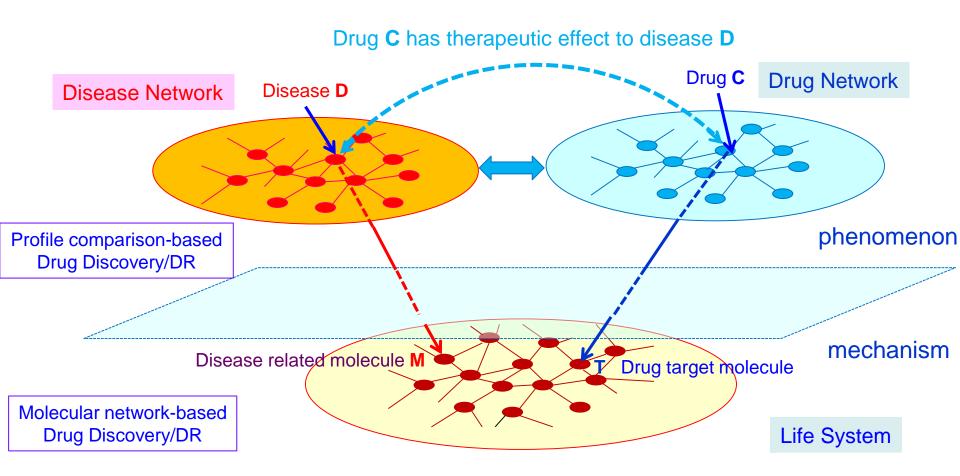
Nature Reviews Drug Discovery (2012)



Overall trend in R&D efficiency (inflation-adjusted)

Basic structure of profile-based computational drug discovery

Framework of Triple-layer disease and drug network

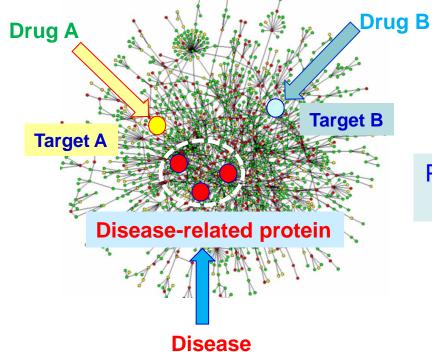


DR: Drug Repositioning: is the application of known drugs (compounds) to treat new indications (i.e., new diseases)

Common Platform of DrugDiscovery/DR Protein-Protein interaction network (PPIN)

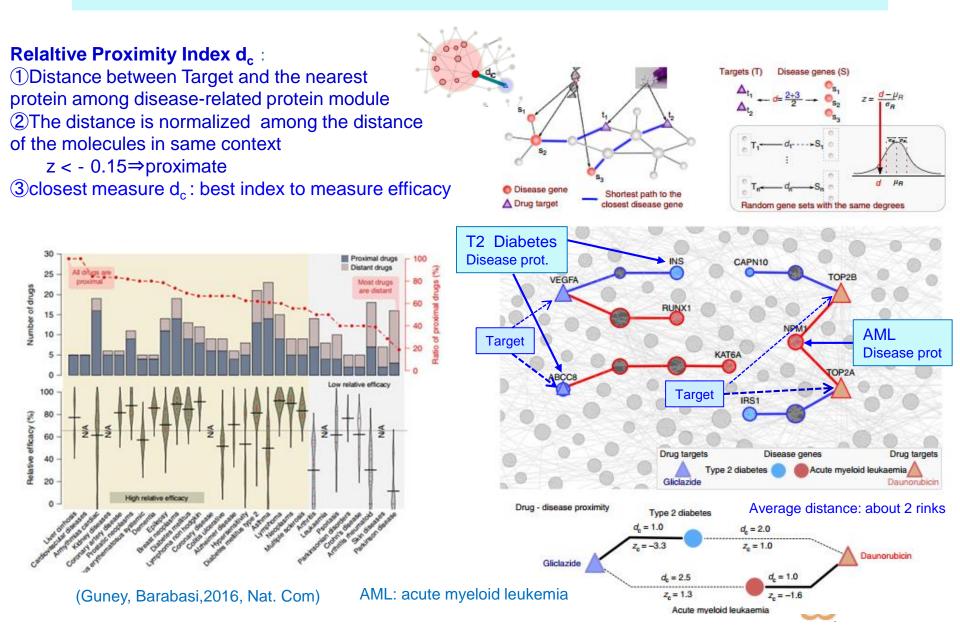
- Common Platform bionetwork: mediating disease and drug action
- Protein-protein interaction network (PPIN) as common platform
- Disease: Scaffolding in PPIN: Disease-related protein (gene)
- **Drug** : Scaffolding in PPIN: **Drug Target protein**
- Based on the distance (proximity) between Disease-related protein and target protein,

the impact of the drug is measured



Protein-protein Interaction Network (PPIN)

Proximity between Drug and Disease at PPIN



Need for Learning

- We are still missing in understanding of the necessary conditions for molecule to be effective to disease
- We should find these conditions by learning from the succeeded <diseasedrug-target molecule> combinations
- Artificial Intelligence (AI), specially Deep Learning is now the most powerful method

Our Approach

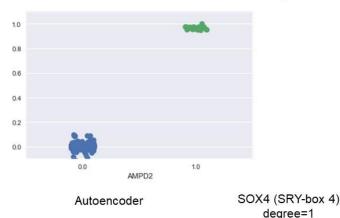
- By using deep learning and genomewide protein interaction network,
- We build a computational framework to predict potential Drug Target genes and
- Repositionable drugs for Alzheimer's disease.

Our computational workflow

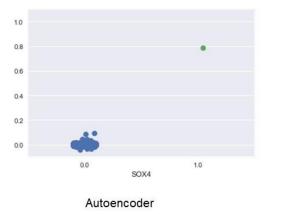
Step1: Input data Step 2: Feature Engineering Genome-wide PIN Feature engineering by "deep autoencoder" and a state-of-the-art feature selection algorithm Dimensional reduction by "deep autoencoder" Drugs and their targets 0 information Latent space

Restoration Accuracy between Deep Learning and SVD (singular value decomposition)

For a certain protein, the connections are described by adjacency vector; (0,0,0,1,0,1,0,...), where 0 _(i): not connected to i th node 1_(i): connected to i th node

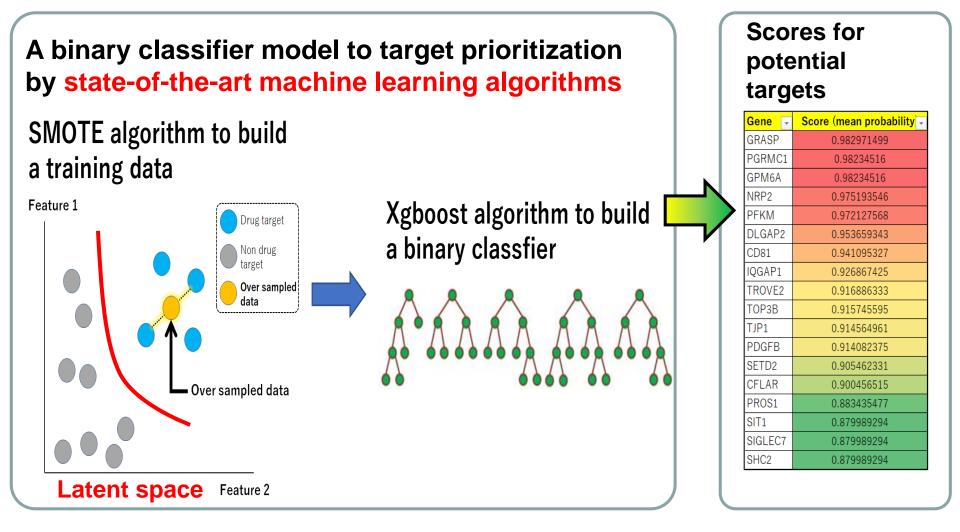


AMPD2 (adenosine monophosphate deaminase 2) degree=26



Step 3: Classifier model

Step 4: Target prioritization



Correspondent with Wet reseach

PGCM1 : progesterone receptor membrane 1

Journal of Neurochemistry

JOURNAL OF NEUROCHEMISTRY | 2017 | 140 | 561-575

doi: 10.1111/inc.13917

ORIGINAL

Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer's disease

神経保護的効果 (neuroprotective)認知不全・炎症に治療効果

GPM6A : Glycoprotein M6A

INTERNATIONAL IOCIENAL OF MOLECULAR MEDICINE 23: 467-675, 2010

Characterization of changes in global gene expression in the brain of neuron-specific enolase/human Tau23 transgenic mice in response to overexpression of Tau protein

CD81:Tetraspanins family

frontiers in Molecular Neuroscience

MINI REVIEW published: 21 December 2016 doi: 10.3389/fnmol.2016.00149

The Emerging Role of Tetraspanins in the Proteolytic Processing of the Amyloid Precursor Protein

Lisa Seipold and Paul Saftig*

Institut für Biochemie, Christian-Albrechts-Universität zu Kiel (CAU), Kiel, Germany

OPEN ORCESS Freely available online

PLOS ONE

Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers II: Sigma-2/PGRMC1 Receptors Mediate Abeta 42 Oligomer Binding and Synaptotoxicity

Nicholas J. Izzo¹, Jinbin Xu², Chenbo Zeng², Molly J. Kirk^{5,9}, Kelsie Mozzoni¹, Colleen Silky¹, Courtney Rehak¹, Raymond Yurko¹, Gary Look¹, Gilbert Rishton¹, Hank Safferstein¹, Carlos Cruchaga⁶, Alison Goate⁶, Michael A. Cahill¹⁰, Ottavio Arancio⁷, Robert H. Mach², Rolf Craven⁴, Elizabeth Head⁴, Harry LeVine III³, Tara L. Spires-Jones^{5,8}, Susan M. Catalano^{1*}

DLGAP2 : DLG-Associated Protein 2

Journal of Alabermer's Disease Int (2015) 101-104 DOI: 10.1213/302-142010

Genetic Variation in Imprinted Genes is Associated with Risk of Late-Onset Alzheimer's Disease

PFKM: Phospofructokinase

Cytotechnology (2016) 68:2567-2578 DOI 10.1007/s10616-016-9980-3

ORIGINAL ARTICLE

Neuroprotective effect of Picholine virgin olive oil and its hydroxycinnamic acids component against β -amyloid-induced toxicity in SH-SY5Y neurotypic cells

GRASP	PIK3C2B	PKIA
PGRMC1	NEU3	PFKP
GPM6A	SLC25A38	PAN2
NRP2	TNFSF12	GLUD1
PFKM	ADRA1B	DNM3
DLGAP2	DPM2	ITGA5
	NLRP12 NLRC4	RILPL2
CD81	UIMC1	MAEA
IQGAP1	IL8	NCDN
TROVE2	VAV1	DGCR14
ТОРЗВ	ARHGEF1	PACSIN3
TJP1	WISP2	CD46
PDGFB	PRKCE	NIT1
SETD2	TBXA2R	ICAM4
CFLAR	TSPAN4	GNA13
PROS1	EPHB4	STK40
SIT1	LOC63920	ROGDI
SIGLEC7	PSEN1	
	SPOCK3	CDH10
SHC2	TSPO	WSB2
SH2D1A	SLC4A1	PHPT1

By using the Al-based method, we successfully predict potential drug targets (more than 100 genes) for Alzheimer's disease.

SLC25A38 (APPOPTOSIN)

SLC25A3 increases in the brain from Alzheimer's disease patients as well as from infarct patients. Further, SLC25A38 downregulation is likely to inhibit apoptosis induced by Bax/BH3I and neuronal death induced by Aβ/glutamate.

G Previous

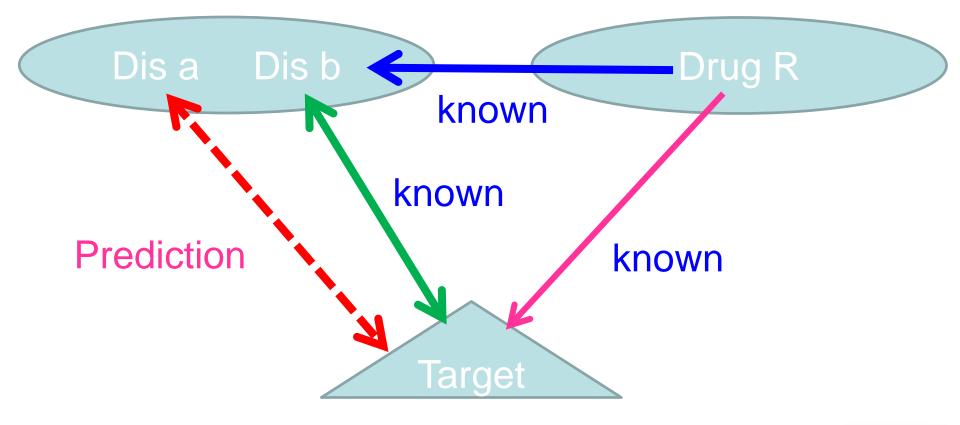
Next 🕑

Featured Article | Articles, Cellular/Molecular

Appoptosin is a Novel Pro-Apoptotic Protein and Mediates Cell Death in Neurodegeneration

Han Zhang, Yun-wu Zhang, Yaomin Chen, Xiumei Huang, Fangfang Zhou, Weiwei Wang, Bo Xian, Xian Zhang, Eliezer Masliah, Quan Chen, Jing-Dong J. Han, Guojun Bu, John C. Reed, Francesca-Fang Liao, Ye-Guang Chen, and Huaxi Xu Journal of Neuroscience 31 October 2012, 32 (44) 15565-15576; DOI: https://doi.org/10.1523/JNEUROSCI.3668-12.2012

If predicted target for disease A is known drugtarget of drug R for disease B, the drug R may be repositionable drug for disease A.



Potential (predicted) repositionable drugs for Alzheimer's disease

repositonable drug	taregt	# of target	category
Tamoxifen	PRKCB PRKCE PRKCG ESRRG	4	Anti-Estrogens; Antineoplastic Agents; Antineoplasti
Mianserin	SLC6A4 DRD3 OPRK1 ADRA1B	4	Adrenergic Agents; Adrenergic alpha-Antagonists; A
Amitriptyline	SLC6A4 OPRK1 ADRA1B OPRM1	4	
Dextromethorphan	SLC6A4 PGRMC1 OPRM1 OPRK1	4	Alkaloids; Antitussive Agents; Central Nervous Syste
Mirtazapine	OPRK1 ADRA1B DRD3 SLC6A4	4	Adrenergic Agents; Adrenergic alpha-Antagonists; A
Tramadol	OPRM1 OPRK1 SLC6A4	3	Alcohols; Amines; Analgesics; Analgesics, Opioid; C
Zinc	MPG SERPINA1 SERPIND1	3	Acetates; Acetic Acid; Acids; Acids, Acyclic; Acids, N
Amoxapine	SLC6A4 DRD3 ADRA1B	3	Adrenergic Agents; Adrenergic Uptake Inhibitors; Al
Etorphine	OPRM1 OPRK1 OPRL1	3	Alkaloids; Analgesics; Analgesics, Opioid; Central No
Tapentadol	OPRM1 OPRK1 SLC6A4	3	Analgesics; Analgesics, Opioid; Benzene Derivatives
Loxapine	ADRA1B DRD3 SLC6A4	3	Antipsychotic Agents; Antipsychotic Agents (First Ge
Pethidine	OPRK1 OPRM1 SLC6A4	3	Acids, Heterocyclic; Adjuvants; Adjuvants, Anesthesi
Talampanel	GRIA1	1	Benzazepines; Heterocyclic Compounds; Heterocycli
Etanercept	FCGR3B	1	Amino Acids, Peptides, and Proteins; Analgesics; A
Vitamin E	PRKCB	1	Antioxidants; Benzopyrans; Chemical Actions and Us
N-[(2R)-2-benzyl-4-(hydroxyamino)-4-LTA4H		1	
Adalimumab	FCGR3B	1	Amino Acids, Peptides, and Proteins; Anti-Inflamm
ALPHA-HYDROXYFARNESYLPHOSPH FNTB		1	Alcohols; Fatty Alcohols; Hydrocarbons; Lipids; Orga
	*		

Example,

The two FDA-approved drugs, **adalimumab and etanercept**, may be most promising candidates, because they are inhibitors of TNFalpha (a key cytokine to regulate immune response) and overexpression of TNF-alpha cause inflammation in various organs, especially in central nerve system.

PMCID: PMC1785182

MedGenMed. 2006; 8(2): 25. Published online 2006 Apr 26.

TNF-alpha Modulation for Treatment of Alzheimer's Disease: A 6-Month Pilot Study

Edward Tobinick, MD, Assistant Clinical Professor of Medicine, <u>Hyman Gross</u>, MD, Clinical Professor of Neurology, <u>Alan Weinberger</u>, MD, Associate Clinical Professor of Medicine/Rheumatology, and <u>Hart Cohen</u>, MD, FRCPC, Associate Clinical Professor of Medicine/Neurology

CNS Drugs

November 2016, Volume 30, <u>Issue 11</u>, pp 1111–1120

Authors

Authors and affiliations

Richard C. Chou 🖂 , Michael Kane, Sanjay Ghimire, Shiva Gautam, Jiang Gui

Future strategies and trends

- Big Data era of genomic medicine and drug discovery
- Contracting multidimensional network by Deep Learning
 - Apply to big data medicine
 - Correlative network structure of comprehensive molecular information – clinical phenotype in genome medicine
 - Disease onset and genetic environment factor in biobank
- All drug discovery has now ready to be realized
- We are now starting "Big data medicine/AI drug discovery consortium of Japan" to promote the project, coordinated by pharmaceutical company, IT company and medical institution

The Second Generation of Genome Medicine

Personalized Prediction/Prevention of Disease

Based on follow-up data, estimate risk of disease

One of the Major goals of Tohoku Medical Megabank

Specially Attacked Challenge is

To predict and prevent the occurrence of multi-factorial (complex) disease

(Common diseases; Hypertension, Type II Diabetes)

Current Genome Medicine Approach

Succeeded in

- 1. Identify **Causative Gene** at POC for rare/undiagnosed disease
- 2. Identify **Driver mutation of Cancer** for Molecular Targeted Drug
- 3. **Preemptive PGx** based on identifying Molecular Polymorphism of Drug Metabolizing Enzyme

But

Totally **Ineffective** for multifactorial complex disease

Developmental Origin of Health and Disease (DOHaD)

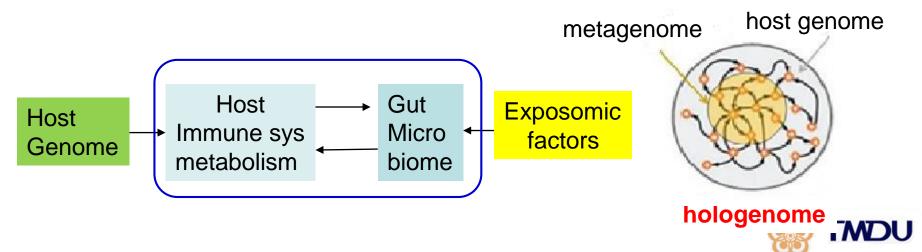
- Netherland Famine
 - The end of World War II, Blockade by Nazis About a half year
 - Fetus during the famine
 - When became adult, contract obesity, T2D,
 - Baker Hypothesis, UK increase of MI
- **Epigenetic Mechanism**
 - Excessive undernutrition : in liver **PPARα/γ** (thrifty **gene**) decline of methylation, gene expression starts
 - epigenetic change is reversible, short term change, long term memory to next generation

Netherland famine (1944)

Disease occurrence

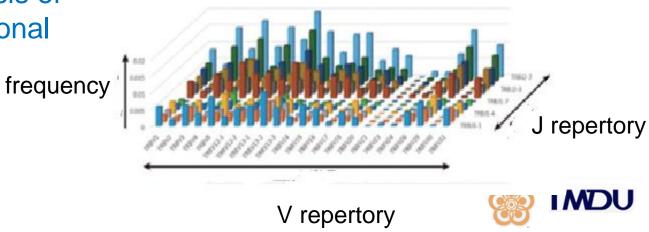
Interstinal microbiome : hologenome

- Major exposomic factor of Disease
 - gut microbiome: one of most biggest environmental factor
 - About 1000 species, 100,trillion, 1 ~1.5kg,substaiontial organ
 - Num. genes, half million, totally one million gense
- Immune, inflammation, interaction against mucosal immunity cell
- **Dietary fiber** : metabolized by gut microbiome: "short chain fatty acid" energy source
- Metabolite of gut microbiome (short chain fatty acid, TMAO) interact with host



Immunome

- Variable and Complimentary Region (CDR 3) : DNA/RNA
- next generation sequence
- Immuno-Repertory
 - Total Profile of TCR
 - Three dimensional display of V(D)J
 - Total Distribution is changed instantly with perturbation
 - Frequency of VDJ use
 - Change of diversity
 - Due to disease or aging
- Clinical sequencing
- Feature analysis of three dimensional distribution



The second generation of genomic medicine

- Interaction with Environmental factors
 Extention of Clinical Sequencing
- Sequence Disease "Meta Omics"
 - Epigenome
 - Microbiome
 - Immunome
- Sequencing clinical meta-omics gives the essential information of multi-factorial disease

Thank you for kind attention

Learning Health System

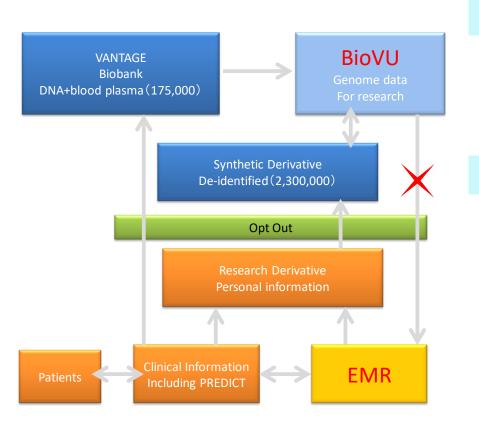
From Discovery of Biological knowledge to Clinical Implementation: 17 yr While practicing healthcare, acquire the new knowledge

- IOM: "Clinical Data as a Basic Staple of Health Learning"
- "Data obtained from routine medical practice is the Key to support LHS" Sharing and learning data improves Health care system
- RCT: Gold standard, but conducting outside the ordinary healthcare systems.
- Is RCT representing the patient group, healthcare is actually directed to
- RCT takes a time and cost
- Effective knowledge accelerate data accumlation

IOM(Institute of Medicine) report 2007, proposed as the paradigm replacing EBM/RCT Digital Infrastructure for the Learning Health System: The Foundation for Continuous Improvement in Health and Health Care

Best Care at Lower Cost: The Path to Continuously Learning Health Care in America

Typical example of LHS Integration of Genomic and Clinical information **BioVU Vanderbilt UH**



EMR

Synthetic Derivative : De-identified EMR information Opt out (2,300,000 records)

Biobank and Genome Analysis

BioVU:

Genome (DNA) InformationIntegration with Synthetic Derivative **VANTAGE Core**: 175,000 specimen, DNA extracted from blood, Genomic analysis

EBM changes to **BDM** (Big Data based Medicine) Paradigm Shift of Clinical Research

- Disparity between RCT Study Population and Real World Data
 - Impossible in reality to make study population including all the stratified (personalized) patterns of disease
 - Current clinical research study population is in "artificial environment" outside real world data

Directly use Big Real World Data

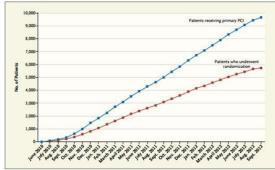
- No need for **unbiased sampling** from population
- Because Big Real World Data is very close to population data
- But still exist the **bias and confounder** (causality) problem

Possible Solution Registry-based Clinical Randomized Trial

- Advantage to use "Real World Data" and the rigorous "Randomization" is fused
 - Thrombus Aspiration in ST-Elevation Myocardial Infarction in Scandinavia (TASTE)
 - first trial of RRCT with cost 50 \$ per participant
 - Large scaled trial build on already-existing high quality registry
- RRCT process
 - Select the study population from the disease registry where already exist much of clinical information (7244 MI patients)
 - Randomized allocation of study and control drug

to selected population among registry

- End point of trial is observed by registry.



Rapid Randomization in the TASTE Trial, with Enrollment of Most Patients Receiving Primary Percutaneous Coronary Intervention (PCI) Adapted from the Institute of Medicine (www.iom.edu/)-/media/Files/Reinity%20Files/Qualley/VSRT/LST%20N/orkshop/Presentations Gragner.pdf). The incremental cost of the Thrombus Aspiration in ST-Elevation Myocardial Infarction in Scandinavia (TASTE) tria was \$300,000, or \$50 for each participant who undervent randomization.

