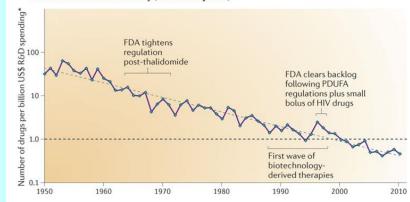
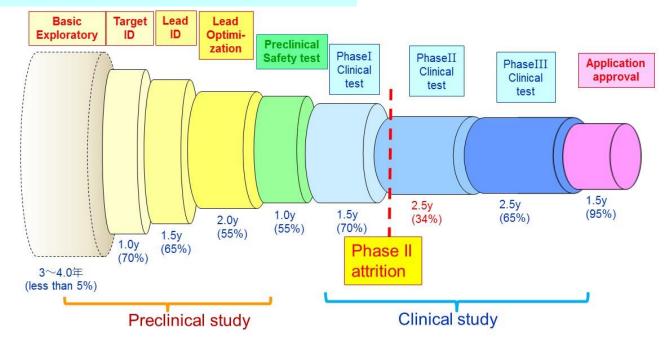

Application of Deep Learning to Drug Discovery

Hase T, Tsuji S, Shimokawa K, Tanaka H Tohoku Medical Megabank Organization, Tohoku University

Current Situation of Drug Discovery

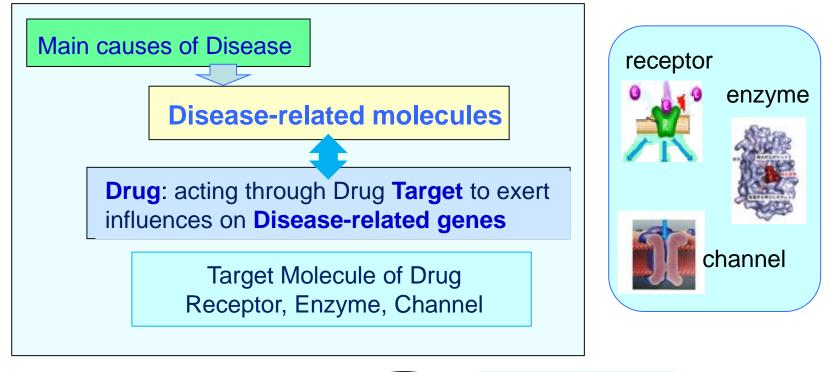

- More than 1B \$ for one marketed drug
- Decrease of success rate

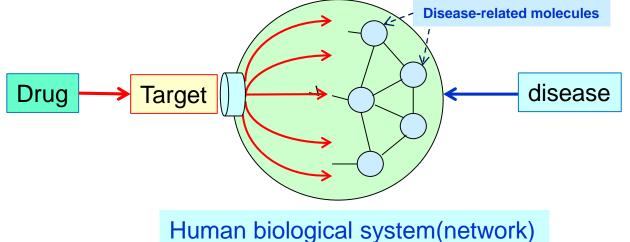
now about 1/20,000~1/30,000


- Remarkable Drop Between non-clinical and clinical test (phase II attrition)
- Clinical Predictability
 - At as early as possible stage,

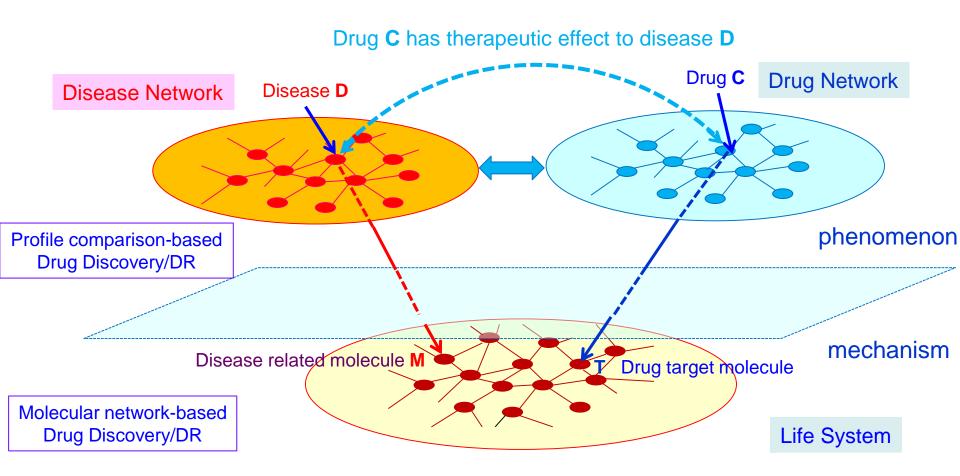
Estimation of clinical efficacy and toxicity

- Efficient measures
 - Use Disease-specific iPS cell
 - Use of Human Bio Big Data in early stage



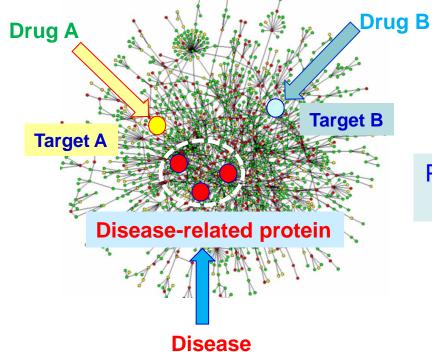

Nature Reviews Drug Discovery (2012)

Overall trend in R&D efficiency (inflation-adjusted)


Relation among Drug, Disease and Target

Basic structure of profile-based computational drug discovery

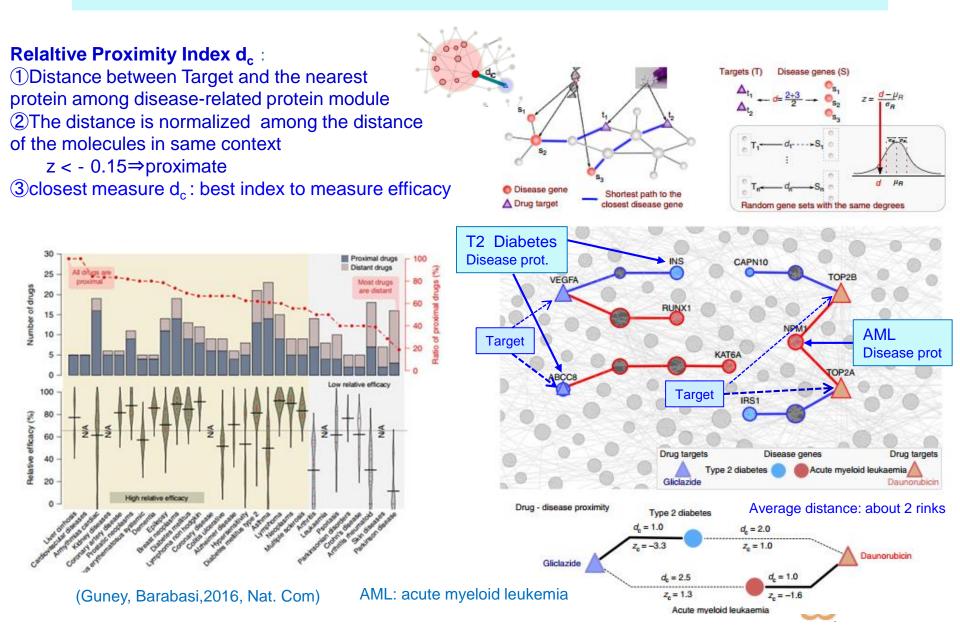
Framework of Triple-layer disease and drug network



DR: Drug Repositioning: is the application of known drugs (compounds) to treat new indications (i.e., new diseases)

Common Platform of DrugDiscovery/DR Protein-Protein interaction network (PPIN)

- Common Platform bionetwork: mediating disease and drug action
- Protein-protein interaction network (PPIN) as common platform
- Disease: Scaffolding in PPIN: Disease-related protein (gene)
- **Drug** : Scaffolding in PPIN: **Drug Target protein**
- Based on the distance (proximity) between Disease-related protein and target protein,

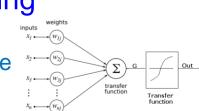

the impact of the drug is measured

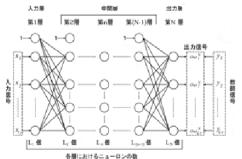
Protein-protein Interaction Network (PPIN)

Proximity between Drug and Disease at PPIN

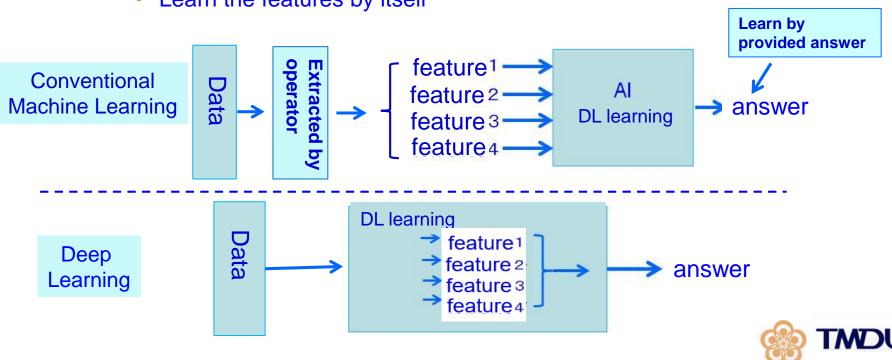
Need for Learning

- We are still missing in understanding of the necessary conditions for molecule to be effective
- We should find these conditions by learning from the succeeded <diseasedrug-target molecule> combinations
- Artificial Intelligence (AI), specially Deep Learning is now the most powerful method

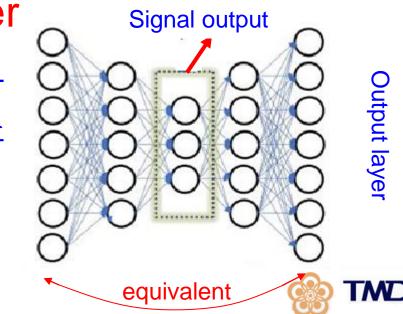

Artificial Intelligence based DrugDiscovery/DR



Artificial Intelligence revolution by Deep Learning

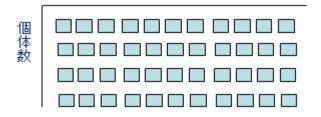

- "Supervised learning"
 - Construct AI by providing the feature and answer
- Deep Learning revolution
 - "Unsupervised learning"
 - Learn the features by itself

Neural information element


Multiple Layer neuro-network

Revolutionary point of DL Autoencoder 2

- Consisting of multiple layers of autoencoders
 - -stacked autoencoder
- Consisting of input layers(encoder) and output layers(decorder) which are contrasted
 - -deep autoencoder


Input layer

Date principle of "Big Data"

Problem : number of attribute value $(p) \gg$ number of sample (n)

p: may be several hundred million n: At most tens of thousands, normally thousands

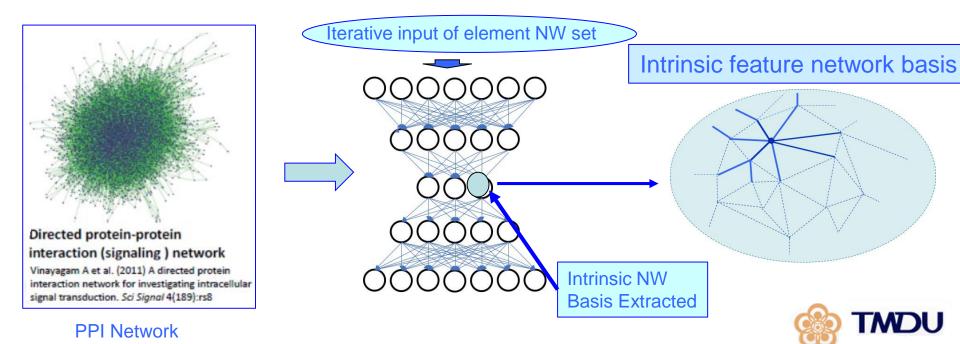
If all these huge nuber of attribute variables are independent, structural analysis of big data is impossible.

Big data is composed of a large number of independent components but less than the number of attribute values as its basis.

Principle of compositionality

Contracting method for multidimensional network by Deep Learning

- Application to big data of medicine and drug discovery
- Increase of "multidimensional network information structure"
 - Genome medicine : <comprehensive molecular information
 clinical phenotype information>
 - Genome cohort : <gene environment information> (lifestyle)
- Deep Learning-based Network Contraction
 - Multidimensional network information structure ⇒ Contact to be composed of a few network bases
- Not linear decomposition.
- Project to be composed of intrinsic bases by nonlinear decomposition.

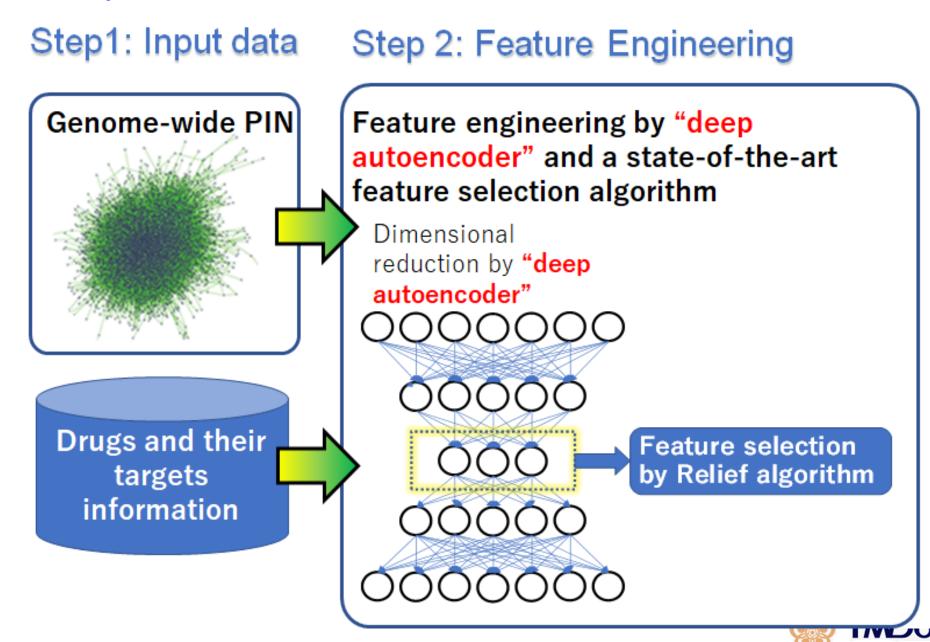


Decomposition to intrinsic network basis

Contracting to sum of intrinsic network bases

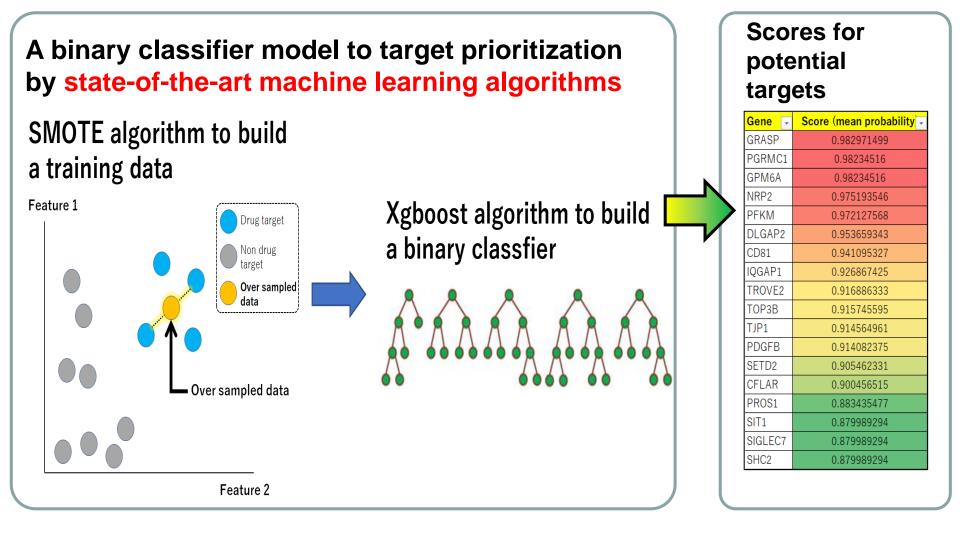
DL is applied to iterative presentation of element NW, where all network links are viewed as a sum of element NW (partial NW)

Sum of intrinsic network basis that reproduces all networks



Our Approach

- By using deep learning and genomewide protein interaction network,
- We build a computational framework to predict potential Drug Target genes and
- Repositionable drugs for Alzheimer's disease.



Our computational workflow

Step 3: Classifier model

Step 4: Target prioritization

GRASP	PIK3C2B	PKIA
PGRMC1	NEU3	PFKP
GPM6A	SLC25A38	PAN2
NRP2	TNFSF12	GLUD1
PFKM	ADRA1B	DNM3
DLGAP2	DPM2	ITGA5
	NLRP12 NLRC4	RILPL2
CD81	UIMC1	MAEA
IQGAP1	IL8	NCDN
TROVE2	VAV1	DGCR14
ТОРЗВ	ARHGEF1	PACSIN3
TJP1	WISP2	CD46
PDGFB	PRKCE	NIT1
SETD2	TBXA2R	ICAM4
CFLAR	TSPAN4	GNA13
PROS1	EPHB4	STK40
SIT1	LOC63920	ROGDI
SIGLEC7	PSEN1	
	SPOCK3	CDH10
SHC2	TSPO	WSB2
SH2D1A	SLC4A1	PHPT1

By using the Al-based method, we successfully predict potential drug targets (more than 100 genes) for Alzheimer's disease.

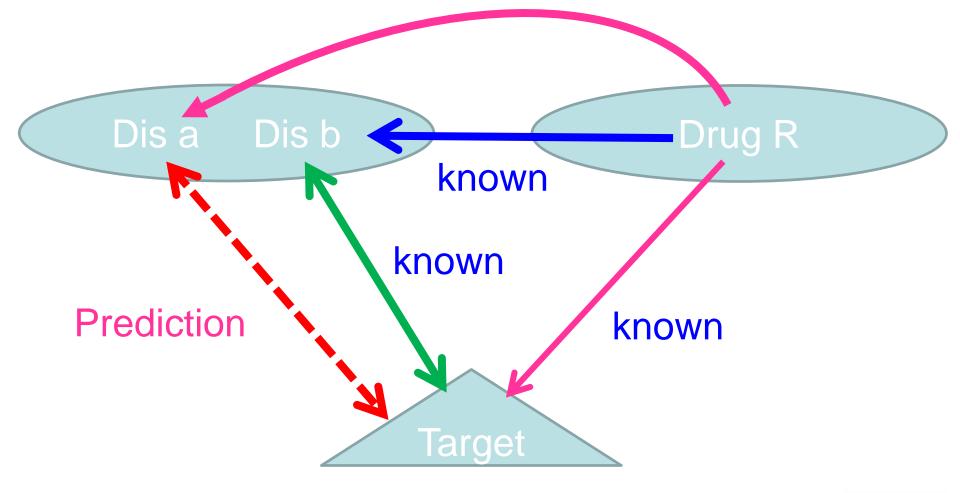
SLC25A38 (APPOPTOSIN)

SLC25A3 increases in the brain from Alzheimer's disease patients as well as from infarct patients. Further, SLC25A38 downregulation is likely to inhibit apoptosis induced by Bax/BH3I and neuronal death induced by Aβ/glutamate.

G Previous

Next 🕑

Featured Article | Articles, Cellular/Molecular


Appoptosin is a Novel Pro-Apoptotic Protein and Mediates Cell Death in Neurodegeneration

Han Zhang, Yun-wu Zhang, Yaomin Chen, Xiumei Huang, Fangfang Zhou, Weiwei Wang, Bo Xian, Xian Zhang, Eliezer Masliah, Quan Chen, Jing-Dong J. Han, Guojun Bu, John C. Reed, Francesca-Fang Liao, Ye-Guang Chen, and Huaxi Xu Journal of Neuroscience 31 October 2012, 32 (44) 15565-15576; DOI: https://doi.org/10.1523/JNEUROSCI.3668-12.2012

Possible DR for Alzheimer's Disease

- Computational network based methods may be among the most promising approaches for computational drug repositioning.
- Especially, drug-disease-target network would be useful resources to investigate novel indications for existing drugs.
- We mapped predicted targets on the drug-disease-target network and analysed the network to investigate novel indications for existing drugs

If predicted target for disease A is known drugtarget of drug R for disease B, the drug R may be repositionable drug for disease A.

Potential (predicted) repositionable drugs for Alzheimer's disease

repositonable drug	taregt	# of target	category
Tamoxifen	PRKCB PRKCE PRKCG ESRRG	4	Anti-Estrogens; Antineoplastic Agents; Antineoplasti
Mianserin	SLC6A4 DRD3 OPRK1 ADRA1B	4	Adrenergic Agents; Adrenergic alpha-Antagonists; A
Amitriptyline	SLC6A4 OPRK1 ADRA1B OPRM1	4	
Dextromethorphan	SLC6A4 PGRMC1 OPRM1 OPRK1	4	Alkaloids; Antitussive Agents; Central Nervous Syste
Mirtazapine	OPRK1 ADRA1B DRD3 SLC6A4	4	Adrenergic Agents; Adrenergic alpha-Antagonists; A
Tramadol	OPRM1 OPRK1 SLC6A4	3	Alcohols; Amines; Analgesics; Analgesics, Opioid; C
Zinc	MPG SERPINA1 SERPIND1	3	Acetates; Acetic Acid; Acids; Acids, Acyclic; Acids, N
Amoxapine	SLC6A4 DRD3 ADRA1B	3	Adrenergic Agents; Adrenergic Uptake Inhibitors; Al
Etorphine	OPRM1 OPRK1 OPRL1	3	Alkaloids; Analgesics; Analgesics, Opioid; Central No
Tapentadol	OPRM1 OPRK1 SLC6A4	3	Analgesics; Analgesics, Opioid; Benzene Derivatives
Loxapine	ADRA1B DRD3 SLC6A4	3	Antipsychotic Agents; Antipsychotic Agents (First Ge
Pethidine	OPRK1 OPRM1 SLC6A4	3	Acids, Heterocyclic; Adjuvants; Adjuvants, Anesthesi
Talampanel	GRIA1	1	Benzazepines; Heterocyclic Compounds; Heterocycli
Etanercept	FCGR3B	1	Amino Acids, Peptides, and Proteins; Analgesics; A
Vitamin E	PRKCB	1	Antioxidants; Benzopyrans; Chemical Actions and Us
N-[(2R)-2-benzyl-4-(hydroxyamino)-4-LTA4H		1	
Adalimumab	FCGR3B	1	Amino Acids, Peptides, and Proteins; Anti-Inflamm
ALPHA-HYDROXYFARNESYLPHOSPH FNTB		1	Alcohols; Fatty Alcohols; Hydrocarbons; Lipids; Orga
	*		

Example,

The two FDA-approved drugs, **adalimumab and etanercept**, may be most promising candidates, because they are inhibitors of TNFalpha (a key cytokine to regulate immune response) and overexpression of TNF-alpha cause inflammation in various organs, especially in central nerve system.

PMCID: PMC1785182

MedGenMed. 2006; 8(2): 25. Published online 2006 Apr 26.

TNF-alpha Modulation for Treatment of Alzheimer's Disease: A 6-Month Pilot Study

Edward Tobinick, MD, Assistant Clinical Professor of Medicine, <u>Hyman Gross</u>, MD, Clinical Professor of Neurology, <u>Alan Weinberger</u>, MD, Associate Clinical Professor of Medicine/Rheumatology, and <u>Hart Cohen</u>, MD, FRCPC, Associate Clinical Professor of Medicine/Neurology

CNS Drugs

November 2016, Volume 30, <u>Issue 11</u>, pp 1111–1120

Authors

Authors and affiliations

Richard C. Chou 🖂 , Michael Kane, Sanjay Ghimire, Shiva Gautam, Jiang Gui

Our computational method would be promising approach to investigate novel drug targets and new indications for FDA-approved drugs.

We are now applying the method to investigate novel targets and repositionable drugs for various diseases including various types of cancers, rheumatoid, diabetes and etc.

Future strategies and trends

- Second stage of **genomic medicine and drug discovery**
- Contracting method for multidimensional network by Deep Learning
 - Apply to big data medicine
 - Correlative network structure of comprehensive molecular information – clinical phenotype in genome medicine
 - Disease onset and genetic environment factor in biobank
- Framework of AI drug discovery has possibility to achieve
- Undertake the implementation of AI drug discovery at the end of this year. Otherwise all will be taken to the United States.
 - Establish the "Big data medicine/Al drug discovery consortium" to promote the project, coordinated by pharmaceutical company, IT company and medical institution

